Suppr超能文献

通过诱导生理变量进行心律特征描述。

Heart rhythm characterization through induced physiological variables.

机构信息

Aix Marseille Univ., Univ. Toulon, CNRS, IM2NP, Marseille, France.

Aix Marseille Univ., Univ. Toulon, CNRS, ENSAM, LSIS, Marseille, France.

出版信息

Sci Rep. 2017 Jul 11;7(1):5059. doi: 10.1038/s41598-017-04998-7.

Abstract

Atrial fibrillation remains a major cause of morbi-mortality, making mass screening desirable and leading industry to actively develop devices devoted to automatic AF detection. Because there is a tendency toward mobile devices, there is a need for an accurate, rapid method for studying short inter-beat interval time series for real-time automatic medical monitoring. We report a new methodology to efficiently select highly discriminative variables between physiological states, here a normal sinus rhythm or atrial fibrillation. We generate induced variables using the first ten time derivatives of an RR interval time series and formally express a new multivariate metric quantifying their discriminative power to drive state variable selection. When combined with a simple classifier, this new methodology results in 99.9% classification accuracy for 1-min RR interval time series (n = 7,400), with heart rate accelerations and jerks being the most discriminant variables. We show that the RR interval time series can be drastically reduced from 60 s to 3 s, with a classification accuracy of 95.0%. We show that heart rhythm characterization is facilitated by induced variables using time derivatives, which is a generic methodology that is particularly suitable to real-time medical monitoring.

摘要

心房颤动仍然是导致发病率和死亡率的主要原因,因此进行大规模筛查是理想的,这促使行业积极开发专门用于自动房颤检测的设备。由于移动设备的趋势,因此需要一种准确、快速的方法来研究短的心动间隔时间序列,以便进行实时自动医疗监测。我们报告了一种新的方法,用于有效地选择生理状态之间具有高度判别力的变量,这里的生理状态是正常窦性节律或心房颤动。我们使用 RR 间隔时间序列的前十个时间导数来生成诱导变量,并正式表达一种新的多元度量标准,用于量化它们的判别能力,以驱动状态变量选择。当与简单的分类器结合使用时,这种新方法可实现 1 分钟 RR 间隔时间序列(n = 7400)的 99.9%分类准确性,其中心率加速和急动是最具判别力的变量。我们表明,RR 间隔时间序列可以从 60 秒急剧减少到 3 秒,分类准确性为 95.0%。我们表明,使用时间导数的诱导变量可以促进心律特征的描述,这是一种通用方法,特别适合实时医疗监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dbc/5505978/66781d4acc6e/41598_2017_4998_Fig3_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验