Aix Marseille Univ., Univ. Toulon, CNRS, IM2NP, Marseille, France.
Aix Marseille Univ., Univ. Toulon, CNRS, ENSAM, LSIS, Marseille, France.
Sci Rep. 2017 Jul 11;7(1):5059. doi: 10.1038/s41598-017-04998-7.
Atrial fibrillation remains a major cause of morbi-mortality, making mass screening desirable and leading industry to actively develop devices devoted to automatic AF detection. Because there is a tendency toward mobile devices, there is a need for an accurate, rapid method for studying short inter-beat interval time series for real-time automatic medical monitoring. We report a new methodology to efficiently select highly discriminative variables between physiological states, here a normal sinus rhythm or atrial fibrillation. We generate induced variables using the first ten time derivatives of an RR interval time series and formally express a new multivariate metric quantifying their discriminative power to drive state variable selection. When combined with a simple classifier, this new methodology results in 99.9% classification accuracy for 1-min RR interval time series (n = 7,400), with heart rate accelerations and jerks being the most discriminant variables. We show that the RR interval time series can be drastically reduced from 60 s to 3 s, with a classification accuracy of 95.0%. We show that heart rhythm characterization is facilitated by induced variables using time derivatives, which is a generic methodology that is particularly suitable to real-time medical monitoring.
心房颤动仍然是导致发病率和死亡率的主要原因,因此进行大规模筛查是理想的,这促使行业积极开发专门用于自动房颤检测的设备。由于移动设备的趋势,因此需要一种准确、快速的方法来研究短的心动间隔时间序列,以便进行实时自动医疗监测。我们报告了一种新的方法,用于有效地选择生理状态之间具有高度判别力的变量,这里的生理状态是正常窦性节律或心房颤动。我们使用 RR 间隔时间序列的前十个时间导数来生成诱导变量,并正式表达一种新的多元度量标准,用于量化它们的判别能力,以驱动状态变量选择。当与简单的分类器结合使用时,这种新方法可实现 1 分钟 RR 间隔时间序列(n = 7400)的 99.9%分类准确性,其中心率加速和急动是最具判别力的变量。我们表明,RR 间隔时间序列可以从 60 秒急剧减少到 3 秒,分类准确性为 95.0%。我们表明,使用时间导数的诱导变量可以促进心律特征的描述,这是一种通用方法,特别适合实时医疗监测。