State Key Laboratory of Robotics and Systems, Harbin Institute of Technology , Yikuang Street 2, 150080 Harbin, China.
Laboratory for Bio- and Nano-Instrumentation, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne , Batiment BM 3109 Station 17, 1015 Lausanne, Switzerland.
ACS Appl Mater Interfaces. 2017 Jul 26;9(29):24456-24461. doi: 10.1021/acsami.7b07762. Epub 2017 Jul 13.
Focused electron beam induced deposition (FEBID) has been demonstrated as a promising solution for synthesizing truly three-dimensional (3D) nanostructures. However, the lack of morphological feedback during growth complicates further development toward higher spatial fabrication precision. Here, we show that by combining in situ high speed atomic force microscopy (HS-AFM) with FEBID, morphologies in multistep fabrication process can be accessed. More importantly, the proposed method enables simultaneous imaging and fabrication operation, which opens new possibilities to investigate evolving mechanical properties of the deposit. The experiments indicate an exponential increase law of the mechanical resistance, meaning that a mechanically stable state establishes around 4 min after deposition.
聚焦电子束诱导沉积(FEBID)已被证明是合成真正三维(3D)纳米结构的一种有前途的解决方案。然而,在生长过程中缺乏形态反馈,这使得进一步提高空间制造精度变得复杂。在这里,我们通过将原位高速原子力显微镜(HS-AFM)与 FEBID 相结合,展示了在多步制造过程中可以获得形貌。更重要的是,所提出的方法能够实现同时成像和制造操作,这为研究沉积物不断变化的机械性能开辟了新的可能性。实验表明机械阻力呈指数增长规律,这意味着在沉积后约 4 分钟左右就会建立一个机械稳定状态。