Suppr超能文献

校准后的肌肉模型可改善跟踪模拟,而不会增强步态预测。

Calibrated muscle models improve tracking simulations without enhancing gait predictions.

作者信息

Maceratesi Filippo, Febrer-Nafría Míriam, Font-Llagunes Josep M

机构信息

Department of Mechanical Engineering and Institute for Research and Innovation in Health (IRIS), Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Barcelona, Spain.

Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.

出版信息

PLoS One. 2025 Jul 1;20(7):e0327172. doi: 10.1371/journal.pone.0327172. eCollection 2025.

Abstract

OBJECTIVES

This study presents two main aims: (i) to assess functionally-calibrated musculoskeletal models (FCMs) in both tracking and predictive simulations of human motion, against non-linearly scaled models (NSMs), and (ii) to examine the effects of three different variations of our baseline functional calibration approach on the results of tracking and predictive simulations.

METHODS

Motion capture experiments of six functional activities were performed with three healthy subjects. The musculotendon (MT) parameters of 18 muscles per leg were estimated using an optimal control problem. A baseline problem formulation and three variations were developed to generate four different FCMs per subject. Then, the FCMs were compared against NSMs in tracking simulations of the motions excluded from the calibration and fully-predictive simulations of gait.

RESULTS

In the tracking simulations, the FCMs led to more accurate joint torques estimations. Including gait in the calibration problems improved the knee torques accuracy (normalised root mean square error: 0.31 [Formula: see text] 0.11), compared to the baseline calibration (normalised root mean square error: 0.70 [Formula: see text] 0.21). Regarding the gait predictive simulations, the NSMs consistently yielded more accurate subtalar inversion/eversion torques and knee flexion angles, compared to the FCMs. The accuracy of the predicted muscle excitations was generally consistent between NSMs and FCMs.

CONCLUSION

The results suggest that, while the FCMs led to more accurate joint torques estimations in the tracking simulations, they did not outperform the NSMs in the fully-predictive gait simulations.

摘要

目的

本研究提出两个主要目标:(i)针对非线性缩放模型(NSM),评估功能校准的肌肉骨骼模型(FCM)在人体运动的跟踪和预测模拟中的表现;(ii)研究我们基线功能校准方法的三种不同变体对跟踪和预测模拟结果的影响。

方法

对三名健康受试者进行了六项功能活动的运动捕捉实验。使用最优控制问题估计每条腿18块肌肉的肌腱(MT)参数。开发了一个基线问题公式和三种变体,为每个受试者生成四种不同的FCM。然后,在排除校准的运动跟踪模拟和步态完全预测模拟中,将FCM与NSM进行比较。

结果

在跟踪模拟中,FCM能更准确地估计关节扭矩。在校准问题中纳入步态,与基线校准相比,提高了膝关节扭矩的准确性(归一化均方根误差:0.31 [公式:见正文] 0.11),基线校准的归一化均方根误差为0.70 [公式:见正文] 0.21)。关于步态预测模拟,与FCM相比,NSM始终能产生更准确的距下关节内翻/外翻扭矩和膝关节屈曲角度。NSM和FCM之间预测肌肉兴奋的准确性总体上是一致的。

结论

结果表明,虽然FCM在跟踪模拟中能更准确地估计关节扭矩,但在完全预测的步态模拟中,它们并不优于NSM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2969/12212882/e8a15e883bf1/pone.0327172.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验