Suppr超能文献

控制电子烟中尼古丁排放的传递现象:模型构建与实验研究。

Transport phenomena governing nicotine emissions from electronic cigarettes: model formulation and experimental investigation.

作者信息

Talih Soha, Balhas Zainab, Salman Rola, El-Hage Rachel, Karaoghlanian Nareg, El-Hellani Ahmad, Baassiri Mohamad, Jaroudi Ezzat, Eissenberg Thomas, Saliba Najat, Shihadeh Alan

机构信息

Mechanical Engineering Department, Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.

Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA.

出版信息

Aerosol Sci Technol. 2017;51(1):1-11. doi: 10.1080/02786826.2016.1257853. Epub 2016 Nov 8.

Abstract

Electronic cigarettes (ECIGs) electrically heat and aerosolize a liquid containing propylene glycol (PG), vegetable glycerin (VG), flavorants, water, and nicotine. ECIG effects and proposed methods to regulate them are controversial. One regulatory focal point involves nicotine emissions. We describe a mathematical model that predicts ECIG nicotine emissions. The model computes the vaporization rate of individual species by numerically solving the unsteady species and energy conservation equations. To validate model predictions, yields of nicotine, total particulate matter, PG, and VG were measured while manipulating puff topography, electrical power, and liquid composition across 100 conditions. Nicotine flux, the rate at which nicotine is emitted per unit time, was the primary outcome. Across conditions, the measured and computed nicotine flux were highly correlated (r = 0.85, <.0001). As predicted, device power, nicotine concentration, PG/VG ratio, and puff duration influenced nicotine flux (<.05), while water content and puff velocity did not. Additional empirical investigation revealed that PG/VG liquids act as ideal solutions, that liquid vaporization accounts for more than 95% of ECIG aerosol mass emissions, and that as device power increases the aerosol composition shifts towards the less volatile components of the parent liquid. To the extent that ECIG regulations focus on nicotine emissions, mathematical models like this one can be used to predict ECIG nicotine emissions and to test the effects of proposed regulation of factors that influence nicotine flux.

摘要

电子烟通过电加热并使含有丙二醇(PG)、蔬菜甘油(VG)、调味剂、水和尼古丁的液体雾化。电子烟的影响以及对其进行监管的提议方法存在争议。一个监管焦点涉及尼古丁排放。我们描述了一个预测电子烟尼古丁排放的数学模型。该模型通过数值求解非稳态物质和能量守恒方程来计算各个成分的汽化速率。为了验证模型预测,在100种条件下对抽吸形态、电功率和液体成分进行操作时,测量了尼古丁、总颗粒物、PG和VG的产量。尼古丁通量,即单位时间内尼古丁的排放速率,是主要结果。在各种条件下,测量的和计算的尼古丁通量高度相关(r = 0.85,<.0001)。正如预测的那样,设备功率、尼古丁浓度、PG/VG比例和抽吸持续时间会影响尼古丁通量(<.05),而含水量和抽吸速度则不会。进一步的实证研究表明,PG/VG液体表现为理想溶液,液体汽化占电子烟气溶胶质量排放的95%以上,并且随着设备功率的增加,气溶胶成分会向母液中挥发性较低的成分转变。就电子烟法规关注尼古丁排放而言,这样的数学模型可用于预测电子烟尼古丁排放,并测试拟议的对影响尼古丁通量的因素进行监管的效果。

相似文献

1
Transport phenomena governing nicotine emissions from electronic cigarettes: model formulation and experimental investigation.
Aerosol Sci Technol. 2017;51(1):1-11. doi: 10.1080/02786826.2016.1257853. Epub 2016 Nov 8.
2
Reactive Oxygen Species Emissions from Supra- and Sub-Ohm Electronic Cigarettes.
J Anal Toxicol. 2019 Jan 1;43(1):45-50. doi: 10.1093/jat/bky065.
5
Vaped Humectants in E-Cigarettes Are a Source of Phenols.
Chem Res Toxicol. 2020 Sep 21;33(9):2374-2380. doi: 10.1021/acs.chemrestox.0c00132. Epub 2020 Aug 13.
6
Clouds and "throat hit": Effects of liquid composition on nicotine emissions and physical characteristics of electronic cigarette aerosols.
Aerosol Sci Technol. 2017;51(11):1231-1239. doi: 10.1080/02786826.2017.1341040. Epub 2017 Jun 30.

引用本文的文献

1
Characterization of a novel oronasal-restricted nicotine vaping self-administration model in mice.
Neuropharmacology. 2025 May 1;268:110315. doi: 10.1016/j.neuropharm.2025.110315. Epub 2025 Jan 18.
2
Dose by design: How limits on nicotine flux and puff duration affect the abuse liability of electronic nicotine delivery systems.
Drug Alcohol Depend. 2025 Jan 1;266:112508. doi: 10.1016/j.drugalcdep.2024.112508. Epub 2024 Nov 28.
4
Physical and Chemical Characterization of Aerosols Produced from Experimentally Designed Nicotine Salt-Based E-Liquids.
Chem Res Toxicol. 2024 Aug 19;37(8):1315-1328. doi: 10.1021/acs.chemrestox.4c00073. Epub 2024 Jul 30.
5
Nicotine flux and pharmacokinetics-based considerations for early assessment of nicotine delivery systems.
Drug Alcohol Depend Rep. 2024 May 27;11:100245. doi: 10.1016/j.dadr.2024.100245. eCollection 2024 Jun.
7
Constraining electronic nicotine delivery systems (ENDS) nicotine dose by controlling nicotine flux at a limited puff duration.
Exp Clin Psychopharmacol. 2024 Oct;32(5):604-614. doi: 10.1037/pha0000719. Epub 2024 May 30.
9
Chemical and physiological interactions between e-liquid constituents: cause for concern?
Tob Control. 2025 May 15;34(3):393-396. doi: 10.1136/tc-2023-058546.
10
Optical characterization of native aerosols from e-cigarettes in localized volumes.
Biomed Opt Express. 2024 Feb 16;15(3):1697-1708. doi: 10.1364/BOE.507316. eCollection 2024 Mar 1.

本文引用的文献

1
Free-Base and Protonated Nicotine in Electronic Cigarette Liquids and Aerosols.
Chem Res Toxicol. 2015 Aug 17;28(8):1532-7. doi: 10.1021/acs.chemrestox.5b00107. Epub 2015 Jul 22.
2
Why public health people are more worried than excited over e-cigarettes.
BMC Med. 2014 Dec 9;12:226. doi: 10.1186/s12916-014-0226-y.
4
Electronic cigarette effectiveness and abuse liability: predicting and regulating nicotine flux.
Nicotine Tob Res. 2015 Feb;17(2):158-62. doi: 10.1093/ntr/ntu175. Epub 2014 Sep 1.
5
Electronic cigarettes: review of use, content, safety, effects on smokers and potential for harm and benefit.
Addiction. 2014 Nov;109(11):1801-10. doi: 10.1111/add.12659. Epub 2014 Jul 31.
6
Electronic nicotine delivery systems: regulatory and safety challenges: Singapore perspective.
Tob Control. 2014 Mar;23(2):119-25. doi: 10.1136/tobaccocontrol-2012-050483. Epub 2012 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验