Suppr超能文献

电子烟中的汽化保湿剂是酚类物质的来源。

Vaped Humectants in E-Cigarettes Are a Source of Phenols.

机构信息

Chemistry Department, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107-2020, Lebanon.

Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23284, United States.

出版信息

Chem Res Toxicol. 2020 Sep 21;33(9):2374-2380. doi: 10.1021/acs.chemrestox.0c00132. Epub 2020 Aug 13.

Abstract

Electronic cigarettes (ECIGs) have always been promoted as safer alternatives to combustible cigarettes. However, a growing amount of literature shows that while ECIGs do not involve combustion-derived toxicants, thermal degradation of the main constituents of ECIG liquid produces toxicants such as carbonyls. In this study, we report the detection of phenolic compounds in ECIG aerosols using a novel analytical method. The introduced method relies on liquid-liquid extraction to separate phenols from the major constituents of ECIG aerosol: propylene glycol (PG) and vegetable glycerol (VG). Phenol emissions from ECIGs were tested at different powers, puff durations, PG/VG ratios, nicotine benzoate concentrations, and flow rates to assess the influence of these operating parameters on phenol formation. The performance metrics showed that the analytical method has high specificity and reliability to separate and quantify phenolic compounds in ECIG aerosols. Increasing power and puff duration significantly increased all phenol emissions, while flow rate had no significant effects. The phenol profile in the ECIG aerosol was dominated by the unsubstituted phenol that reached comparable levels to those of IQOS, combustible cigarettes, and waterpipe. In contrast, low levels of the more toxic phenolic compounds, like catechol and hydroxyquinone, were quantified in ECIG aerosols. Emission of toxicants is presented, for the first time in this study, as the yield per unit of time, or flux (μg/s), which is more suitable for interstudy and interproduct comparison. This work demonstrates a robust analytical method for isolating and quantifying phenol emissions in ECIG aerosols. Using this method, the study shows that phenols, which are not present in the simple solution of nicotine benzoate dissolved in mixtures of PG/VG, are formed upon vaping. Phenol emissions are independent of the nicotine benzoate concentration but significantly correlated with the PG/VG ratio. Emissions increased with power and puff duration, consistent with conditions that lead to a higher temperature and greater thermal degradation.

摘要

电子烟(ECIG)一直被宣传为比可燃香烟更安全的替代品。然而,越来越多的文献表明,虽然 ECIG 不涉及燃烧衍生的有毒物质,但 ECIG 液体的主要成分的热降解会产生有毒物质,如羰基化合物。在这项研究中,我们报告了使用一种新的分析方法检测 ECIG 气溶胶中的酚类化合物。所介绍的方法依赖于液 - 液萃取,将酚类化合物从 ECIG 气溶胶的主要成分:丙二醇(PG)和蔬菜甘油(VG)中分离出来。在不同的功率、抽吸持续时间、PG/VG 比、烟碱苯甲酸浓度和流速下测试 ECIG 中的苯酚排放,以评估这些操作参数对酚类化合物形成的影响。性能指标表明,该分析方法具有很高的特异性和可靠性,可用于分离和定量 ECIG 气溶胶中的酚类化合物。增加功率和抽吸持续时间显著增加了所有的苯酚排放,而流速没有显著影响。ECIG 气溶胶中的苯酚谱以未取代的苯酚为主,其水平与 IQOS、可燃香烟和水烟相当。相比之下,在 ECIG 气溶胶中定量了低水平的更有毒的酚类化合物,如儿茶酚和对苯二酚。在这项研究中,首次以单位时间的排放量(μg/s),即通量,来表示有毒物质的排放,这更适合于不同研究和不同产品之间的比较。这项工作展示了一种用于分离和定量 ECIG 气溶胶中苯酚排放的强大分析方法。使用该方法,研究表明,在雾化过程中形成了在尼古丁苯甲酸的简单溶液中不存在的苯酚,而尼古丁苯甲酸溶解在 PG/VG 的混合物中。苯酚的排放与尼古丁苯甲酸的浓度无关,但与 PG/VG 比显著相关。排放随着功率和抽吸持续时间的增加而增加,这与导致更高温度和更大热降解的条件一致。

相似文献

1
Vaped Humectants in E-Cigarettes Are a Source of Phenols.
Chem Res Toxicol. 2020 Sep 21;33(9):2374-2380. doi: 10.1021/acs.chemrestox.0c00132. Epub 2020 Aug 13.
2
Reactive Oxygen Species Emissions from Supra- and Sub-Ohm Electronic Cigarettes.
J Anal Toxicol. 2019 Jan 1;43(1):45-50. doi: 10.1093/jat/bky065.
4
Detection of 5-hydroxymethylfurfural and furfural in the aerosol of electronic cigarettes.
Tob Control. 2016 Nov;25(Suppl 2):ii88-ii93. doi: 10.1136/tobaccocontrol-2016-053220. Epub 2016 Oct 25.
6
Enhancement of Benzene Emissions in Special Combinations of Electronic Nicotine Delivery System Liquid Mixtures.
Chem Res Toxicol. 2024 Feb 19;37(2):227-233. doi: 10.1021/acs.chemrestox.3c00251. Epub 2024 Jan 19.
7
Passive Vaping from Sub-Ohm Electronic Cigarette Devices.
Int J Environ Res Public Health. 2021 Nov 4;18(21):11606. doi: 10.3390/ijerph182111606.
8
Characteristics and toxicant emissions of JUUL electronic cigarettes.
Tob Control. 2019 Nov;28(6):678-680. doi: 10.1136/tobaccocontrol-2018-054616. Epub 2019 Feb 11.
9
Transport phenomena governing nicotine emissions from electronic cigarettes: model formulation and experimental investigation.
Aerosol Sci Technol. 2017;51(1):1-11. doi: 10.1080/02786826.2016.1257853. Epub 2016 Nov 8.
10
Electronic cigarette nicotine delivery can exceed that of combustible cigarettes: a preliminary report.
Tob Control. 2016 Apr;25(e1):e6-9. doi: 10.1136/tobaccocontrol-2015-052447. Epub 2015 Aug 31.

引用本文的文献

1
Arsenic and arsenic species in MOD, POD, and disposable POD electronic cigarette aerosols: a pilot study.
J Environ Expo Assess. 2023 Apr;2(2). doi: 10.20517/jeea.2023.03. Epub 2023 Apr 27.
2
Toxicity of waterpipe tobacco smoking: the role of flavors, sweeteners, humectants, and charcoal.
Toxicol Sci. 2024 Oct 1;201(2):159-173. doi: 10.1093/toxsci/kfae095.
3
Harmful and Potentially Harmful Constituents in E-Liquids and Aerosols from Electronic Nicotine Delivery Systems (ENDS).
Chem Res Toxicol. 2024 Jul 15;37(7):1155-1170. doi: 10.1021/acs.chemrestox.4c00093. Epub 2024 Jun 26.
5
The paradox of the safer cigarette: understanding the pulmonary effects of electronic cigarettes.
Eur Respir J. 2024 Jun 28;63(6). doi: 10.1183/13993003.01494-2023. Print 2024 Jun.
6
The implications of Vitamin E acetate in E-cigarette, or vaping, product use-associated lung injury.
Ann Thorac Med. 2023 Jan-Mar;18(1):1-9. doi: 10.4103/atm.atm_144_22. Epub 2023 Jan 25.
10
The effect of electronic cigarettes exposure on learning and memory functions: behavioral and molecular analysis.
Inhal Toxicol. 2021 May-Jul;33(6-8):234-243. doi: 10.1080/08958378.2021.1954732. Epub 2021 Jul 27.

本文引用的文献

1
Health impact of electronic cigarettes and heated tobacco systems.
Intern Emerg Med. 2019 Sep;14(6):817-820. doi: 10.1007/s11739-019-02167-4. Epub 2019 Aug 14.
2
Electronic Vapor Product Usage and Substance Use Risk Behaviors Among U.S. High School Students.
J Child Adolesc Psychopharmacol. 2019 Aug;29(7):545-553. doi: 10.1089/cap.2019.0047. Epub 2019 Jul 24.
3
Surface Chemistry of Electronic Cigarette Electrical Heating Coils: Effects of Metal Type on Propylene Glycol Thermal Decomposition.
J Anal Appl Pyrolysis. 2018 Sep;134:520-525. doi: 10.1016/j.jaap.2018.07.019. Epub 2018 Jul 26.
5
A Randomized Trial of E-Cigarettes versus Nicotine-Replacement Therapy.
N Engl J Med. 2019 Feb 14;380(7):629-637. doi: 10.1056/NEJMoa1808779. Epub 2019 Jan 30.
6
Dihydroxyacetone levels in electronic cigarettes: Wick temperature and toxin formation.
Aerosol Sci Technol. 2018;52(4):370-376. doi: 10.1080/02786826.2018.1424316. Epub 2018 Jan 23.
7
Carbon Monoxide and Small Hydrocarbon Emissions from Sub-ohm Electronic Cigarettes.
Chem Res Toxicol. 2019 Feb 18;32(2):312-317. doi: 10.1021/acs.chemrestox.8b00324. Epub 2019 Feb 4.
8
Nicotine and other potentially harmful compounds in "nicotine-free" e-cigarette liquids in Australia.
Med J Aust. 2019 Feb;210(3):127-128. doi: 10.5694/mja2.12059. Epub 2019 Jan 13.
10
Fate of pyrazines in the flavored liquids of e-cigarettes.
Aerosol Sci Technol. 2018;52(4):377-384. doi: 10.1080/02786826.2018.1433293. Epub 2018 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验