Suppr超能文献

线性长程相关随机过程的多尺度信息存储

Multiscale information storage of linear long-range correlated stochastic processes.

作者信息

Faes Luca, Pereira Margarida Almeida, Silva Maria Eduarda, Pernice Riccardo, Busacca Alessandro, Javorka Michal, Rocha Ana Paula

机构信息

Department of Engineering, University of Palermo, Viale delle Scienze, Bldg. 9, 90128 Palermo, Italy.

Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, Porto, Portugal.

出版信息

Phys Rev E. 2019 Mar;99(3-1):032115. doi: 10.1103/PhysRevE.99.032115.

Abstract

Information storage, reflecting the capability of a dynamical system to keep predictable information during its evolution over time, is a key element of intrinsic distributed computation, useful for the description of the dynamical complexity of several physical and biological processes. Here we introduce a parametric approach which allows one to compute information storage across multiple timescales in stochastic processes displaying both short-term dynamics and long-range correlations (LRC). Our analysis is performed in the popular framework of multiscale entropy, whereby a time series is first "coarse grained" at the chosen timescale through low-pass filtering and downsampling, and then its complexity is evaluated in terms of conditional entropy. Within this framework, our approach makes use of linear fractionally integrated autoregressive (ARFI) models to derive analytical expressions for the information storage computed at multiple timescales. Specifically, we exploit state space models to provide the representation of lowpass filtered and downsampled ARFI processes, from which information storage is computed at any given timescale relating the process variance to the prediction error variance. This enhances the practical usability of multiscale information storage, as it enables a computationally reliable quantification of a complexity measure which incorporates the effects of LRC together with that of short-term dynamics. The proposed measure is first assessed in simulated ARFI processes reproducing different types of autoregressive dynamics and different degrees of LRC, studying both the theoretical values and the finite sample performance. We find that LRC alter substantially the complexity of ARFI processes even at short timescales, and that reliable estimation of complexity can be achieved at longer timescales only when LRC are properly modeled. Then, we assess multiscale information storage in physiological time series measured in humans during resting state and postural stress, revealing unprecedented responses to stress of the complexity of heart period and systolic arterial pressure variability, which are related to the different role played by LRC in the two conditions.

摘要

信息存储反映了一个动态系统在其随时间演化过程中保持可预测信息的能力,是内在分布式计算的关键要素,有助于描述多个物理和生物过程的动态复杂性。在此,我们引入一种参数化方法,该方法允许人们在显示短期动态和长程相关性(LRC)的随机过程中跨多个时间尺度计算信息存储。我们的分析是在多尺度熵的常用框架内进行的,即首先通过低通滤波和下采样在选定的时间尺度上对时间序列进行“粗粒化”,然后根据条件熵评估其复杂性。在这个框架内,我们的方法利用线性分数积分自回归(ARFI)模型来推导在多个时间尺度上计算的信息存储的解析表达式。具体而言,我们利用状态空间模型来表示低通滤波和下采样后的ARFI过程,从中在将过程方差与预测误差方差相关联的任何给定时间尺度上计算信息存储。这提高了多尺度信息存储的实际可用性,因为它能够对一种复杂性度量进行计算上可靠的量化,该度量结合了LRC的影响以及短期动态的影响。首先在模拟的ARFI过程中评估所提出的度量,这些过程再现了不同类型的自回归动态和不同程度的LRC,同时研究理论值和有限样本性能。我们发现,即使在短时间尺度上,LRC也会显著改变ARFI过程的复杂性,并且只有在对LRC进行适当建模时,才能在较长时间尺度上实现对复杂性的可靠估计。然后,我们评估了人类在静息状态和姿势应激期间测量的生理时间序列中的多尺度信息存储,揭示了心率间期和收缩期动脉压变异性复杂性对应激前所未有的反应,这与LRC在这两种情况下所起的不同作用有关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验