Suppr超能文献

运用进化支持向量机方法对西班牙北部多洛雷斯湖的富营养化进行预测建模

Predictive modelling of eutrophication in the Pozón de la Dolores lake (Northern Spain) by using an evolutionary support vector machines approach.

作者信息

García-Nieto P J, García-Gonzalo E, Alonso Fernández J R, Díaz Muñiz C

机构信息

Department of Mathematics, Faculty of Sciences, University of Oviedo, 33007, Oviedo, Spain.

Cantabrian Basin Authority, Spanish Ministry of Agriculture, Food and Environment, 33071, Oviedo, Spain.

出版信息

J Math Biol. 2018 Mar;76(4):817-840. doi: 10.1007/s00285-017-1161-2. Epub 2017 Jul 15.

Abstract

Eutrophication is a water enrichment in nutrients (mainly phosphorus) that generally leads to symptomatic changes and deterioration of water quality and all its uses in general, when the production of algae and other aquatic vegetations are increased. In this sense, eutrophication has caused a variety of impacts, such as high levels of Chlorophyll a (Chl-a). Consequently, anticipate its presence is a matter of importance to prevent future risks. The aim of this study was to obtain a predictive model able to perform an early detection of the eutrophication in water bodies such as lakes. This study presents a novel hybrid algorithm, based on support vector machines (SVM) approach in combination with the particle swarm optimization (PSO) technique, for predicting the eutrophication from biological and physical-chemical input parameters determined experimentally through sampling and subsequent analysis in a certificate laboratory. This optimization technique involves hyperparameter setting in the SVM training procedure, which significantly influences the regression accuracy. The results of the present study are twofold. In the first place, the significance of each biological and physical-chemical variables on the eutrophication is presented through the model. Secondly, a model for forecasting eutrophication is obtained with success. Indeed, regression with optimal hyperparameters was performed and coefficients of determination equal to 0.90 for the Total phosphorus estimation and 0.92 for the Chlorophyll concentration were obtained when this hybrid PSO-SVM-based model was applied to the experimental dataset, respectively. The agreement between experimental data and the model confirmed the good performance of the latter.

摘要

富营养化是指水体中营养物质(主要是磷)的富集,当藻类和其他水生植被的产量增加时,通常会导致水质及其所有用途出现症状性变化和恶化。从这个意义上说,富营养化已经造成了各种影响,例如叶绿素a(Chl-a)含量过高。因此,预测其存在对于预防未来风险至关重要。本研究的目的是获得一个能够对湖泊等水体中的富营养化进行早期检测的预测模型。本研究提出了一种新颖 的混合算法,该算法基于支持向量机(SVM)方法并结合粒子群优化(PSO)技术,用于根据通过采样在认证实验室进行后续分析实验确定的生物和物理化学输入参数来预测富营养化。这种优化技术涉及SVM训练过程中的超参数设置,这对回归精度有显著影响。本研究的结果有两个方面。首先,通过该模型展示了每个生物和物理化学变量对富营养化的重要性。其次,成功获得了一个预测富营养化的模型。实际上,进行了具有最佳超参数的回归,当将基于PSO-SVM的混合模型应用于实验数据集时,总磷估计值的决定系数为0.90,叶绿素浓度的决定系数为0.92。实验数据与模型之间的一致性证实了该模型的良好性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验