Kaplan Jonas T, Man Kingson, Greening Steven G
Brain and Creativity Institute, University of Southern California Los Angeles, CA, USA ; Department of Psychology, University of Southern California Los Angeles, CA, USA.
Brain and Creativity Institute, University of Southern California Los Angeles, CA, USA.
Front Hum Neurosci. 2015 Mar 25;9:151. doi: 10.3389/fnhum.2015.00151. eCollection 2015.
Here we highlight an emerging trend in the use of machine learning classifiers to test for abstraction across patterns of neural activity. When a classifier algorithm is trained on data from one cognitive context, and tested on data from another, conclusions can be drawn about the role of a given brain region in representing information that abstracts across those cognitive contexts. We call this kind of analysis Multivariate Cross-Classification (MVCC), and review several domains where it has recently made an impact. MVCC has been important in establishing correspondences among neural patterns across cognitive domains, including motor-perception matching and cross-sensory matching. It has been used to test for similarity between neural patterns evoked by perception and those generated from memory. Other work has used MVCC to investigate the similarity of representations for semantic categories across different kinds of stimulus presentation, and in the presence of different cognitive demands. We use these examples to demonstrate the power of MVCC as a tool for investigating neural abstraction and discuss some important methodological issues related to its application.
在此,我们着重介绍一种在使用机器学习分类器来测试神经活动模式中的抽象性方面正在兴起的趋势。当一个分类器算法在来自一种认知情境的数据上进行训练,并在来自另一种认知情境的数据上进行测试时,就可以得出关于给定脑区在表征跨越这些认知情境的抽象信息中所起作用的结论。我们将这种分析称为多变量交叉分类(MVCC),并回顾几个它最近产生影响的领域。MVCC在建立跨认知领域的神经模式之间的对应关系方面很重要,包括运动 - 感知匹配和跨感觉匹配。它已被用于测试由感知诱发的神经模式与从记忆中生成的神经模式之间的相似性。其他研究工作使用MVCC来研究在不同类型的刺激呈现以及不同认知需求存在的情况下,语义类别的表征的相似性。我们用这些例子来展示MVCC作为一种研究神经抽象的工具的强大之处,并讨论与其应用相关的一些重要方法学问题。