Suppr超能文献

一种数据驱动的建模方法,用于识别驱动生理失调的疾病特异性多器官网络。

A data-driven modeling approach to identify disease-specific multi-organ networks driving physiological dysregulation.

作者信息

Anderson Warren D, DeCicco Danielle, Schwaber James S, Vadigepalli Rajanikanth

机构信息

Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.

出版信息

PLoS Comput Biol. 2017 Jul 21;13(7):e1005627. doi: 10.1371/journal.pcbi.1005627. eCollection 2017 Jul.

Abstract

Multiple physiological systems interact throughout the development of a complex disease. Knowledge of the dynamics and connectivity of interactions across physiological systems could facilitate the prevention or mitigation of organ damage underlying complex diseases, many of which are currently refractory to available therapeutics (e.g., hypertension). We studied the regulatory interactions operating within and across organs throughout disease development by integrating in vivo analysis of gene expression dynamics with a reverse engineering approach to infer data-driven dynamic network models of multi-organ gene regulatory influences. We obtained experimental data on the expression of 22 genes across five organs, over a time span that encompassed the development of autonomic nervous system dysfunction and hypertension. We pursued a unique approach for identification of continuous-time models that jointly described the dynamics and structure of multi-organ networks by estimating a sparse subset of ∼12,000 possible gene regulatory interactions. Our analyses revealed that an autonomic dysfunction-specific multi-organ sequence of gene expression activation patterns was associated with a distinct gene regulatory network. We analyzed the model structures for adaptation motifs, and identified disease-specific network motifs involving genes that exhibited aberrant temporal dynamics. Bioinformatic analyses identified disease-specific single nucleotide variants within or near transcription factor binding sites upstream of key genes implicated in maintaining physiological homeostasis. Our approach illustrates a novel framework for investigating the pathogenesis through model-based analysis of multi-organ system dynamics and network properties. Our results yielded novel candidate molecular targets driving the development of cardiovascular disease, metabolic syndrome, and immune dysfunction.

摘要

在复杂疾病的整个发展过程中,多个生理系统相互作用。了解生理系统间相互作用的动态变化和连通性,有助于预防或减轻复杂疾病潜在的器官损伤,其中许多疾病目前对现有治疗方法具有抗性(例如高血压)。我们通过将基因表达动态的体内分析与逆向工程方法相结合,以推断多器官基因调控影响的数据驱动动态网络模型,研究了疾病发展过程中器官内部和器官之间的调控相互作用。我们获得了跨越五个器官的22个基因在一段涵盖自主神经系统功能障碍和高血压发展的时间跨度内的表达实验数据。我们采用了一种独特的方法来识别连续时间模型,该模型通过估计约12000种可能的基因调控相互作用中的一个稀疏子集,共同描述多器官网络的动态变化和结构。我们的分析表明,自主神经功能障碍特异性的多器官基因表达激活模式序列与一个独特的基因调控网络相关。我们分析了适应基序的模型结构,并识别出涉及表现出异常时间动态的基因的疾病特异性网络基序。生物信息学分析在参与维持生理稳态的关键基因上游转录因子结合位点内或附近,识别出疾病特异性单核苷酸变异。我们的方法展示了一个通过基于模型的多器官系统动态变化和网络特性分析来研究发病机制的新框架。我们的结果产生了驱动心血管疾病、代谢综合征和免疫功能障碍发展的新候选分子靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f4e/5521738/535da985192f/pcbi.1005627.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验