Suppr超能文献

经皮微创植入式无线感应起搏系统及其远程刺激控制系统。

Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system.

机构信息

Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.

Department of Bioengineering, School of Engineering and Applied Sciences, UCLA, Los Angeles, CA, 90095, USA.

出版信息

Sci Rep. 2017 Jul 21;7(1):6180. doi: 10.1038/s41598-017-06493-5.

Abstract

Pacemakers have existed for decades as a means to restore cardiac electrical rhythms. However, lead-related complications have remained a clinical challenge. While market-released leadless devices have addressed some of the issues, their pacer-integrated batteries cause new health risks and functional limitations. Inductive power transfer enables wireless powering of bioelectronic devices; however, Specific Absorption Rate and size limitations reduce power efficiency for biomedical applications. We designed a remote-controlled system in which power requirements were significantly reduced via intermittent power transfer to control stimulation intervals. In parallel, the cardiac component was miniaturized to facilitate intravascular deployment into the anterior cardiac vein. Given size constraints, efficiency was optimal via a circular receiver coil wrapped into a half-cylinder with a meandering tail. The pacemaker was epicardially tested in a euthanized pig at 60 beats per minute, 2 V amplitude, and 1 ms pulse width, restoring mean arterial pressure from 0 to 37 mmHg. Power consumption was 1 mW at a range of > 3 cm with no misalignment and at 2 cm with 45° displacement misalignment, 45° x-axis angular misalignment, or 45° y-axis angular misalignment. Thus, we demonstrated a remote-controlled miniaturized pacing system with low power consumption, thereby providing a basis for the next generation of wireless implantable devices.

摘要

心脏起搏器作为一种恢复心脏电节律的手段已经存在了几十年。然而,与导线相关的并发症仍然是一个临床挑战。虽然市场上推出的无导线设备解决了一些问题,但它们的起搏器集成电池会带来新的健康风险和功能限制。感应式功率传输可实现生物电子设备的无线供电;然而,吸收率和尺寸限制降低了生物医学应用的功率效率。我们设计了一个远程控制系统,通过间歇式功率传输来显著降低功率需求,从而控制刺激间隔。同时,心脏部件被小型化,以便通过血管内部署到前心静脉。考虑到尺寸限制,通过将圆形接收线圈缠绕成带有蜿蜒尾巴的半圆柱形状,可以实现最佳效率。在一只 60 次/分钟、2V 幅度和 1ms 脉冲宽度的处死猪模型中进行了心外膜测试,起搏器将平均动脉压从 0 恢复到 37mmHg。在没有不对齐和在 2cm 处有 45°位移不对齐、45°x 轴角度不对齐或 45°y 轴角度不对齐的情况下,功率消耗为 1mW,范围为>3cm。因此,我们展示了一种具有低功耗的远程控制的小型化起搏系统,为下一代无线植入式设备提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38b0/5522478/c0ffa0b70c05/41598_2017_6493_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验