Suppr超能文献

溶剂和蛋白质动力学对氨基糖苷腺苷转移酶2″-Ia配体识别和抑制的影响。

Effect of solvent and protein dynamics in ligand recognition and inhibition of aminoglycoside adenyltransferase 2″-Ia.

作者信息

Bacot-Davis Valjean R, Bassenden Angelia V, Sprules Tara, Berghuis Albert M

机构信息

McGill University, Biochemistry, 3649 Promenade Sir William Osler Room 470, Montreal, QC H3A 0G4, Canada.

Quebec/Eastern Canada NMR Centre, Pulp & Paper Research Centre, 3420 University St. Room 023, Montreal, QC H3A 2A7, Canada.

出版信息

Protein Sci. 2017 Sep;26(9):1852-1863. doi: 10.1002/pro.3224. Epub 2017 Jul 21.

Abstract

The aminoglycoside modifying enzyme (AME) ANT(2″)-Ia is a significant target for next generation antibiotic development. Structural studies of a related aminoglycoside-modifying enzyme, ANT(3″)(9), revealed this enzyme contains dynamic, disordered, and well-defined segments that modulate thermodynamically before and after antibiotic binding. Characterizing these structural dynamics is critical for in situ screening, design, and development of contemporary antibiotics that can be implemented in a clinical setting to treat potentially lethal, antibiotic resistant, human infections. Here, the first NMR structural ensembles of ANT(2″)-Ia are presented, and suggest that ATP-aminoglycoside binding repositions the nucleotidyltransferase (NT) and C-terminal domains for catalysis to efficiently occur. Residues involved in ligand recognition were assessed by site-directed mutagenesis. In vitro activity assays indicate a critical role for I129 toward aminoglycoside modification in addition to known catalytic D44, D46, and D48 residues. These observations support previous claims that ANT aminoglycoside sub-class promiscuity is not solely due to binding cleft size, or inherent partial disorder, but can be controlled by ligand modulation on distinct dynamic and thermodynamic properties of ANTs under cellular conditions. Hydrophobic interactions in the substrate binding cleft, as well as solution dynamics in the C-terminal tail of ANT(2″)-Ia, advocate toward design of kanamycin-derived cationic lipid aminoglycoside analogs, some of which have already shown antimicrobial activity in vivo against kanamycin and gentamicin-resistant P. aeruginosa. This data will drive additional in silico, next generation antibiotic development for future human use to combat increasingly prevalent antimicrobial resistance.

摘要

氨基糖苷修饰酶(AME)ANT(2″)-Ia是下一代抗生素研发的重要靶点。对相关氨基糖苷修饰酶ANT(3″)(9)的结构研究表明,该酶包含动态、无序和明确的片段,这些片段在抗生素结合前后会发生热力学调节。表征这些结构动力学对于当代抗生素的原位筛选、设计和开发至关重要,这些抗生素可在临床环境中用于治疗潜在致命的、耐药的人类感染。本文展示了ANT(2″)-Ia的首个核磁共振结构集合,表明ATP-氨基糖苷结合会重新定位核苷酸转移酶(NT)和C末端结构域,以有效地进行催化。通过定点诱变评估了参与配体识别的残基。体外活性测定表明,除了已知的催化残基D44、D46和D48外,I129对氨基糖苷修饰也起着关键作用。这些观察结果支持了先前的说法,即ANT氨基糖苷亚类的混杂性不仅仅是由于结合裂隙大小或固有的部分无序,而是可以通过在细胞条件下对ANTs不同的动态和热力学性质进行配体调节来控制。底物结合裂隙中的疏水相互作用以及ANT(2″)-Ia C末端尾巴的溶液动力学,都支持设计卡那霉素衍生的阳离子脂质氨基糖苷类似物,其中一些已经在体内对卡那霉素和庆大霉素耐药的铜绿假单胞菌显示出抗菌活性。这些数据将推动更多的计算机辅助下一代抗生素研发,以供未来人类使用,以对抗日益普遍的抗菌药物耐药性。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验