Brain Language Laboratory, Department of Philosophy & Humanities, WE4, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10099 Berlin, Germany; Einstein Center for Neurosciences, Berlin 10117 Berlin, Germany.
Prog Neurobiol. 2018 Jan;160:1-44. doi: 10.1016/j.pneurobio.2017.07.001. Epub 2017 Jul 20.
Neurocognitive and neurolinguistics theories make explicit statements relating specialized cognitive and linguistic processes to specific brain loci. These linking hypotheses are in need of neurobiological justification and explanation. Recent mathematical models of human language mechanisms constrained by fundamental neuroscience principles and established knowledge about comparative neuroanatomy offer explanations for where, when and how language is processed in the human brain. In these models, network structure and connectivity along with action- and perception-induced correlation of neuronal activity co-determine neurocognitive mechanisms. Language learning leads to the formation of action perception circuits (APCs) with specific distributions across cortical areas. Cognitive and linguistic processes such as speech production, comprehension, verbal working memory and prediction are modelled by activity dynamics in these APCs, and combinatorial and communicative-interactive knowledge is organized in the dynamics within, and connections between APCs. The network models and, in particular, the concept of distributionally-specific circuits, can account for some previously not well understood facts about the cortical 'hubs' for semantic processing and the motor system's role in language understanding and speech sound recognition. A review of experimental data evaluates predictions of the APC model and alternative theories, also providing detailed discussion of some seemingly contradictory findings. Throughout, recent disputes about the role of mirror neurons and grounded cognition in language and communication are assessed critically.
神经认知和神经语言学理论明确阐述了特定认知和语言过程与特定大脑位置之间的关系。这些关联假设需要神经生物学的证明和解释。最近的人类语言机制数学模型受到基本神经科学原理和比较神经解剖学已有知识的限制,为语言在人类大脑中的处理位置、时间和方式提供了解释。在这些模型中,网络结构和连接性以及动作和感知引起的神经元活动相关性共同决定了神经认知机制。语言学习导致具有特定皮质区域分布的动作感知回路 (APCs) 的形成。言语产生、理解、言语工作记忆和预测等认知和语言过程通过这些 APC 中的活动动态进行建模,组合和交际互动知识在 APC 内的动力学以及 APC 之间的连接中进行组织。网络模型,特别是分布特异性回路的概念,可以解释一些以前不太理解的关于语义处理的皮质“枢纽”以及运动系统在语言理解和语音识别中的作用的事实。对实验数据的回顾评估了 APC 模型和替代理论的预测,也对一些看似矛盾的发现进行了详细讨论。自始至终,都对镜像神经元和基于基础的认知在语言和交流中的作用的最新争议进行了批判性评估。