Suppr超能文献

耦合纳米结构的光热显微镜及纳米级加热对表面增强拉曼光谱的影响

Photothermal Microscopy of Coupled Nanostructures and the Impact of Nanoscale Heating in Surface Enhanced Raman Spectroscopy.

作者信息

Zeng Zhi-Cong, Wang Hao, Johns Paul, Hartland Gregory V, Schultz Zachary D

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN, 46637, United states.

出版信息

J Phys Chem C Nanomater Interfaces. 2017 Jun 1;121(21):11623-11631. doi: 10.1021/acs.jpcc.7b01220. Epub 2017 May 5.

Abstract

The optical properties of plasmonic nanoparticles are strongly dependent on interactions with other nanoparticles, which complicates analysis for systems larger than a few particles. In this work we examined heat dissipation in aggregated nanoparticles, and its influence on surface enhanced Raman scattering (SERS), through correlated photothermal heterodyne imaging, electron microscopy and SERS measurements. For dimers the per particle absorption cross-sections show evidence of interparticle coupling, however, the effects are much smaller than those for the field enhancements that are important for SERS. For larger aggregates the total absorption was observed to be simply proportional to aggregate volume. This observation allows us to model light absorption and heating in the aggregates by assuming that the particles act as independent heat sources. The heat dissipation calculations show that very high temperatures can be created at the nanoparticle surface, and that the temperature decreases with increasing thermal conductivity of the surroundings. This is in agreement with the SERS measurements that show faster signal degradation for air compared to water environments.

摘要

等离子体纳米颗粒的光学性质强烈依赖于与其他纳米颗粒的相互作用,这使得对大于几个颗粒的系统的分析变得复杂。在这项工作中,我们通过相关的光热外差成像、电子显微镜和表面增强拉曼散射(SERS)测量,研究了聚集纳米颗粒中的热耗散及其对表面增强拉曼散射的影响。对于二聚体,每个颗粒的吸收截面显示出颗粒间耦合的证据,然而,这些效应远小于对SERS很重要的场增强效应。对于较大的聚集体,观察到总吸收与聚集体体积简单成正比。这一观察结果使我们能够通过假设颗粒作为独立的热源来模拟聚集体中的光吸收和加热。热耗散计算表明,在纳米颗粒表面可以产生非常高的温度,并且温度随着周围环境热导率的增加而降低。这与SERS测量结果一致,即在空气环境中与水环境相比,信号降解更快。

相似文献

1
Photothermal Microscopy of Coupled Nanostructures and the Impact of Nanoscale Heating in Surface Enhanced Raman Spectroscopy.
J Phys Chem C Nanomater Interfaces. 2017 Jun 1;121(21):11623-11631. doi: 10.1021/acs.jpcc.7b01220. Epub 2017 May 5.
3
Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
Acc Chem Res. 2016 Dec 20;49(12):2746-2755. doi: 10.1021/acs.accounts.6b00409. Epub 2016 Nov 8.
4
Controlled interparticle spacing for surface-modified gold nanoparticle aggregates.
Langmuir. 2008 May 20;24(10):5562-8. doi: 10.1021/la8000784. Epub 2008 Apr 22.
5
Plasmonic and Photothermal Properties of Silica-Capped Gold Nanoparticle Aggregates.
J Phys Chem C Nanomater Interfaces. 2023 Dec 12;127(50):24475-24486. doi: 10.1021/acs.jpcc.3c07536. eCollection 2023 Dec 21.
7
Experimental and Theoretical Observation of Photothermal Chirality in Gold Nanoparticle Helicoids.
ACS Nano. 2020 Apr 28;14(4):4188-4195. doi: 10.1021/acsnano.9b09062. Epub 2020 Mar 26.
9
Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles.
ACS Nano. 2014 Sep 23;8(9):9035-43. doi: 10.1021/nn502294w. Epub 2014 Sep 2.
10

引用本文的文献

1
Investigating the Role of Plasmonics in Electrospun Fibers by Combined Photothermal Heterodyne Imaging and Raman Measurements.
J Phys Chem C Nanomater Interfaces. 2024 Jun 27;128(25):10347-10356. doi: 10.1021/acs.jpcc.4c00996. Epub 2024 Jun 12.
2
Self-packaged stretchable printed circuits with ligand-bound liquid metal particles in elastomer.
Nat Commun. 2025 May 28;16(1):4944. doi: 10.1038/s41467-025-60118-4.
3
Investigation of SERS Frequency Fluctuations Relevant to Sensing and Catalysis.
J Phys Chem C Nanomater Interfaces. 2022 Sep 1;126(34):14547-14557. doi: 10.1021/acs.jpcc.2c03150. Epub 2022 Aug 23.
4
Recent development of surface-enhanced Raman scattering for biosensing.
J Nanobiotechnology. 2023 May 6;21(1):149. doi: 10.1186/s12951-023-01890-7.
5
Sandwiching analytes with structurally diverse plasmonic nanoparticles on paper substrates for surface enhanced Raman spectroscopy.
RSC Adv. 2019 Oct 11;9(56):32535-32543. doi: 10.1039/c9ra05399a. eCollection 2019 Oct 10.
6
Determination of lentiviral titer by surface enhanced Raman scattering.
Anal Methods. 2022 Apr 7;14(14):1387-1395. doi: 10.1039/d2ay00041e.
8
Catching COVID: Engineering Peptide-Modified Surface-Enhanced Raman Spectroscopy Sensors for SARS-CoV-2.
ACS Sens. 2021 Sep 24;6(9):3436-3444. doi: 10.1021/acssensors.1c01344. Epub 2021 Sep 7.
9
Understanding Time-Dependent Surface-Enhanced Raman Scattering from Gold Nanosphere Aggregates Using Collision Theory.
J Phys Chem C Nanomater Interfaces. 2020 Jul 2;124(26):14287-14296. doi: 10.1021/acs.jpcc.0c03739. Epub 2020 Jun 10.
10
Smart Gold Nanostructures for Light Mediated Cancer Theranostics: Combining Optical Diagnostics with Photothermal Therapy.
Adv Sci (Weinh). 2020 Jun 18;7(15):1903441. doi: 10.1002/advs.201903441. eCollection 2020 Aug.

本文引用的文献

1
Detection of electron tunneling across plasmonic nanoparticle-film junctions using nitrile vibrations.
Phys Chem Chem Phys. 2017 Feb 22;19(8):5786-5796. doi: 10.1039/c6cp08168a.
2
Selective Detection of RGD-Integrin Binding in Cancer Cells Using Tip Enhanced Raman Scattering Microscopy.
Anal Chem. 2016 Jun 21;88(12):6547-53. doi: 10.1021/acs.analchem.6b01344. Epub 2016 May 27.
3
Quantitative Detection of Photothermal and Photoelectrocatalytic Effects Induced by SPR from Au@Pt Nanoparticles.
Angew Chem Int Ed Engl. 2015 Sep 21;54(39):11462-6. doi: 10.1002/anie.201505985. Epub 2015 Aug 17.
5
Tip-enhanced THz Raman spectroscopy for local temperature determination at the nanoscale.
Anal Bioanal Chem. 2015 Nov;407(27):8205-13. doi: 10.1007/s00216-015-8866-0. Epub 2015 Jul 12.
6
Single-particle absorption spectroscopy by photothermal contrast.
Nano Lett. 2015 May 13;15(5):3041-7. doi: 10.1021/nl504992h. Epub 2015 Apr 10.
7
Selective TERS detection and imaging through controlled plasmonics.
Faraday Discuss. 2015;178:221-35. doi: 10.1039/c4fd00190g.
8
Plasmon-induced hot carrier science and technology.
Nat Nanotechnol. 2015 Jan;10(1):25-34. doi: 10.1038/nnano.2014.311.
9
Optical injection of gold nanoparticles into living cells.
Nano Lett. 2015 Jan 14;15(1):770-5. doi: 10.1021/nl504497m. Epub 2014 Dec 15.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验