Suppr超能文献

与传感和催化相关的表面增强拉曼光谱频率波动研究。

Investigation of SERS Frequency Fluctuations Relevant to Sensing and Catalysis.

作者信息

Zoltowski Chelsea M, Shoup Deben N, Schultz Zachary D

机构信息

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.

出版信息

J Phys Chem C Nanomater Interfaces. 2022 Sep 1;126(34):14547-14557. doi: 10.1021/acs.jpcc.2c03150. Epub 2022 Aug 23.

Abstract

The excitation of plasmon resonances on nanoparticles generates locally enhanced electric fields commonly used for sensing applications and energetic charge carriers can drive chemical transformations as photocatalysts. The surface-enhanced Raman scattering (SERS) spectra from mercaptobenzoic acid (MBA) adsorbed to gold nanoparticles (AuNP) and silica encapsulated gold nanoparticles (AuNP@silica) can be used to assess the impact of energetic charge carriers on the observed signal. Measurements were recorded using a traditional point focused Raman spectroscopy and a wide-field spectral imaging approach to assess changes in the spectra of the different particles at increasing power density. The wide-field approach provides an increase in sampling statistics and shows evidence of SERS frequency fluctuations from MBA at low power densities, where it is commonly difficult to record spectra from a point focused spot. The increased spectral resolution of the point spectroscopy measurement provides improved peak identification and the ability to correlate the frequency fluctuations to charged intermediate species. Interestingly, our work suggests that isolated nanoparticles may undergo frequency fluctuations more readily than aggregates.

摘要

纳米颗粒上等离子体共振的激发会产生局部增强的电场,常用于传感应用,而高能电荷载流子可作为光催化剂驱动化学转化。吸附在金纳米颗粒(AuNP)和二氧化硅包裹的金纳米颗粒(AuNP@二氧化硅)上的巯基苯甲酸(MBA)的表面增强拉曼散射(SERS)光谱可用于评估高能电荷载流子对观测信号的影响。测量使用传统的点聚焦拉曼光谱和宽场光谱成像方法进行,以评估不同颗粒在功率密度增加时光谱的变化。宽场方法增加了采样统计量,并显示出在低功率密度下MBA的SERS频率波动的证据,在低功率密度下通常很难从点聚焦光斑记录光谱。点光谱测量提高的光谱分辨率提供了更好的峰识别能力,并能够将频率波动与带电中间物种相关联。有趣的是,我们的工作表明,孤立的纳米颗粒可能比聚集体更容易发生频率波动。

相似文献

1
Investigation of SERS Frequency Fluctuations Relevant to Sensing and Catalysis.与传感和催化相关的表面增强拉曼光谱频率波动研究。
J Phys Chem C Nanomater Interfaces. 2022 Sep 1;126(34):14547-14557. doi: 10.1021/acs.jpcc.2c03150. Epub 2022 Aug 23.

本文引用的文献

5
The Chemical Potential of Plasmonic Excitations.等离子体激元激发的化学势。
Angew Chem Int Ed Engl. 2020 Jan 27;59(5):2085-2088. doi: 10.1002/anie.201914118. Epub 2019 Dec 11.
7
Present and Future of Surface-Enhanced Raman Scattering.表面增强拉曼散射的现状与展望。
ACS Nano. 2020 Jan 28;14(1):28-117. doi: 10.1021/acsnano.9b04224. Epub 2019 Oct 8.
8
Plasmon-Driven Catalysis on Molecules and Nanomaterials.分子与纳米材料上的等离激元驱动催化
Acc Chem Res. 2019 Sep 17;52(9):2506-2515. doi: 10.1021/acs.accounts.9b00224. Epub 2019 Aug 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验