Suppr超能文献

采用DONE算法的无波前传感器自适应光学光学相干断层扫描用于人眼视网膜成像[特邀报告]

Wavefront sensorless adaptive optics OCT with the DONE algorithm for human retinal imaging [Invited].

作者信息

Verstraete Hans R G W, Heisler Morgan, Ju Myeong Jin, Wahl Daniel, Bliek Laurens, Kalkman Jeroen, Bonora Stefano, Jian Yifan, Verhaegen Michel, Sarunic Marinko V

机构信息

Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.

School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.

出版信息

Biomed Opt Express. 2017 Mar 21;8(4):2261-2275. doi: 10.1364/BOE.8.002261. eCollection 2017 Apr 1.

Abstract

In this report, which is an international collaboration of OCT, adaptive optics, and control research, we demonstrate the Data-based Online Nonlinear Extremum-seeker (DONE) algorithm to guide the image based optimization for wavefront sensorless adaptive optics (WFSL-AO) OCT for human retinal imaging. The ocular aberrations were corrected using a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators. The DONE algorithm succeeded in drastically improving image quality and the OCT signal intensity, up to a factor seven, while achieving a computational time of 1 ms per iteration, making it applicable for many high speed applications. We demonstrate the correction of five aberrations using 70 iterations of the DONE algorithm performed over 2.8 s of continuous volumetric OCT acquisition. Data acquired from an imaging phantom and from human research volunteers are presented.

摘要

在这份由光学相干断层扫描(OCT)、自适应光学和控制研究领域开展的国际合作报告中,我们展示了基于数据的在线非线性极值搜索(DONE)算法,用于指导基于图像的无波前传感器自适应光学(WFSL - AO)OCT对人眼视网膜成像进行优化。在对压电致动器中的滞后现象进行线性化处理后,使用多致动器自适应透镜校正了眼像差。DONE算法成功大幅提高了图像质量和OCT信号强度,提升幅度高达7倍,同时实现了每次迭代1毫秒的计算时间,使其适用于许多高速应用。我们展示了在连续2.8秒的容积OCT采集过程中,通过执行70次DONE算法迭代校正了五种像差。文中呈现了从成像模型和人类研究志愿者获取的数据。

相似文献

1
Wavefront sensorless adaptive optics OCT with the DONE algorithm for human retinal imaging [Invited].
Biomed Opt Express. 2017 Mar 21;8(4):2261-2275. doi: 10.1364/BOE.8.002261. eCollection 2017 Apr 1.
2
In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
Biomed Opt Express. 2015 Jan 16;6(2):580-90. doi: 10.1364/BOE.6.000580. eCollection 2015 Feb 1.
3
Lens-based wavefront sensorless adaptive optics swept source OCT.
Sci Rep. 2016 Jun 9;6:27620. doi: 10.1038/srep27620.
5
Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice.
Biomed Opt Express. 2014 Jan 21;5(2):547-59. doi: 10.1364/BOE.5.000547. eCollection 2014 Feb 1.
7
Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited].
Biomed Opt Express. 2017 Apr 19;8(5):2536-2562. doi: 10.1364/BOE.8.002536. eCollection 2017 May 1.
8
Asymptotic proximal point algorithm for wavefront sensorless adaptive optics.
Opt Lett. 2024 Jul 1;49(13):3544-3547. doi: 10.1364/OL.524854.
9
Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions.
Biomed Opt Express. 2016 Dec 2;8(1):16-37. doi: 10.1364/BOE.8.000016. eCollection 2017 Jan 1.

引用本文的文献

1
Image metric-based multi-observation single-step deep deterministic policy gradient for sensorless adaptive optics.
Biomed Opt Express. 2024 Jul 23;15(8):4795-4814. doi: 10.1364/BOE.528579. eCollection 2024 Aug 1.
2
Adaptive optics for high-resolution imaging.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00066-7. Epub 2021 Oct 14.
3
Aberration measurement and correction on a large field of view in fluorescence microscopy.
Biomed Opt Express. 2021 Dec 9;13(1):262-273. doi: 10.1364/BOE.441810. eCollection 2022 Jan 1.
4
Wavefront sensor-less adaptive optics using deep reinforcement learning.
Biomed Opt Express. 2021 Aug 6;12(9):5423-5438. doi: 10.1364/BOE.427970. eCollection 2021 Sep 1.
5
High-speed and widefield handheld swept-source OCT angiography with a VCSEL light source.
Biomed Opt Express. 2021 May 20;12(6):3553-3570. doi: 10.1364/BOE.425411. eCollection 2021 Jun 1.
6
Quantitative multi-contrast mouse imaging with polarization diversity optical coherence tomography and angiography.
Biomed Opt Express. 2020 Nov 6;11(12):6945-6961. doi: 10.1364/BOE.403209. eCollection 2020 Dec 1.
7
Real-time retinal layer segmentation of OCT volumes with GPU accelerated inferencing using a compressed, low-latency neural network.
Biomed Opt Express. 2020 Jun 24;11(7):3968-3984. doi: 10.1364/BOE.395279. eCollection 2020 Jul 1.
8
Multi-scale and -contrast sensorless adaptive optics optical coherence tomography.
Quant Imaging Med Surg. 2019 May;9(5):757-768. doi: 10.21037/qims.2019.05.17.
9
Sensorless adaptive optics multimodal en-face small animal retinal imaging.
Biomed Opt Express. 2018 Dec 19;10(1):252-267. doi: 10.1364/BOE.10.000252. eCollection 2019 Jan 1.
10
Adaptive optics via self-interference digital holography for non-scanning three-dimensional imaging in biological samples.
Biomed Opt Express. 2018 May 10;9(6):2614-2626. doi: 10.1364/BOE.9.002614. eCollection 2018 Jun 1.

本文引用的文献

1
Online Optimization With Costly and Noisy Measurements Using Random Fourier Expansions.
IEEE Trans Neural Netw Learn Syst. 2018 Jan;29(1):167-182. doi: 10.1109/TNNLS.2016.2615134. Epub 2016 Nov 1.
2
Lens-based wavefront sensorless adaptive optics swept source OCT.
Sci Rep. 2016 Jun 9;6:27620. doi: 10.1038/srep27620.
3
Pupil filters for extending the field-of-view in light-sheet microscopy.
Opt Lett. 2016 Mar 15;41(6):1205-8. doi: 10.1364/OL.41.001205.
4
Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.
J Biomed Opt. 2016 Feb;21(2):26007. doi: 10.1117/1.JBO.21.2.026007.
5
Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice.
Biomed Opt Express. 2015 Dec 3;7(1):1-12. doi: 10.1364/BOE.7.000001. eCollection 2016 Jan 1.
6
Model-based sensor-less wavefront aberration correction in optical coherence tomography.
Opt Lett. 2015 Dec 15;40(24):5722-5. doi: 10.1364/OL.40.005722.
7
Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.
Opt Express. 2015 Sep 21;23(19):24587-601. doi: 10.1364/OE.23.024587.
9
In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
Biomed Opt Express. 2015 Jan 16;6(2):580-90. doi: 10.1364/BOE.6.000580. eCollection 2015 Feb 1.
10
Towards model-based adaptive optics optical coherence tomography.
Opt Express. 2014 Dec 29;22(26):32406-18. doi: 10.1364/OE.22.032406.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验