Castro Maria Leticia, Carson Georgia M, McConnell Melanie J, Herst Patries M
School of Biological Sciences, Victoria University, P.O.Box 600, Wellington 6140, New Zealand.
Malaghan Institute of Medical Research, P.O.Box 7060, Wellington 6242, New Zealand.
Antioxidants (Basel). 2017 Jul 22;6(3):58. doi: 10.3390/antiox6030058.
We have previously shown that exposure to high dose ascorbate causes double stranded breaks (DSBs) and a build-up in S-phase in glioblastoma (GBM) cell lines. Here we investigated whether or not this was due to genotoxic stress as well as metabolic stress generated by exposure to high dose ascorbate, radiation, ascorbate plus radiation and H₂O₂ in established and primary GBM cell lines. Genotoxic stress was measured as phosphorylation of the variant histone protein, H2AX, 8-oxo-7,8-dihydroguanine (8OH-dG) positive cells and cells with comet tails. Metabolic stress was measured as a decrease in NADH flux, mitochondrial membrane potential (by CMXRos), ATP levels (by ATP luminescence) and mitochondrial superoxide production (by mitoSOX). High dose ascorbate, ascorbate plus radiation, and H₂O₂ treatments induced both genotoxic and metabolic stress. Exposure to high dose ascorbate blocked DNA synthesis in both DNA damaged and undamaged cell of ascorbate sensitive GBM cell lines. H₂O₂ treatment blocked DNA synthesis in all cell lines with and without DNA damage. DNA synthesis arrest in cells with damaged DNA is likely due to both genotoxic and metabolic stress. However, arrest in DNA synthesis in cells with undamaged DNA is likely due to oxidative damage to components of the mitochondrial energy metabolism pathway.
我们之前已经表明,暴露于高剂量抗坏血酸会导致胶质母细胞瘤(GBM)细胞系中出现双链断裂(DSB)并在S期积累。在此,我们研究了在已建立的和原代GBM细胞系中,这是否是由于遗传毒性应激以及暴露于高剂量抗坏血酸、辐射、抗坏血酸加辐射和过氧化氢所产生的代谢应激所致。遗传毒性应激通过变异组蛋白H2AX的磷酸化、8-氧代-7,8-二氢鸟嘌呤(8OH-dG)阳性细胞以及具有彗星尾的细胞来衡量。代谢应激通过NADH通量的降低、线粒体膜电位(通过CMXRos)、ATP水平(通过ATP发光)以及线粒体超氧化物生成(通过mitoSOX)来衡量。高剂量抗坏血酸、抗坏血酸加辐射以及过氧化氢处理均诱导了遗传毒性和代谢应激。暴露于高剂量抗坏血酸会阻断抗坏血酸敏感GBM细胞系中DNA受损和未受损细胞的DNA合成。过氧化氢处理会阻断所有细胞系(无论有无DNA损伤)的DNA合成。DNA受损细胞中的DNA合成停滞可能是由于遗传毒性和代谢应激共同导致的。然而,DNA未受损细胞中的DNA合成停滞可能是由于线粒体能量代谢途径成分的氧化损伤所致。