Suppr超能文献

三维工程组织模型中细胞-气泡相互作用的定量分析。

Quantification of cell-bubble interactions in a 3D engineered tissue phantom.

机构信息

Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), UCL Physics Building Gower Street, London, WC1E 6BT, UK.

UCL Institute of Orthopaedics and Musculoskeletal Science, London, UK.

出版信息

Sci Rep. 2017 Jul 24;7(1):6331. doi: 10.1038/s41598-017-06678-y.

Abstract

Understanding cell-bubble interactions is crucial for preventing bubble related pathologies and harnessing their potential therapeutic benefits. Bubbles can occur in the body as a result of therapeutic intravenous administration, surgery, infections or decompression. Subsequent interactions with living cells, may result in pathological responses such as decompression sickness (DCS). This work investigates the interactions that occur between bubbles formed during decompression and cells in a 3D engineered tissue phantom. Increasing the tissue phantoms' cellular density resulted in decreased dissolved O (DO) concentrations (p = 0.0003) measured using real-time O monitoring. Direct microscopic observation of these phantoms, revealed a significant (p = 0.0024) corresponding reduction in bubble nucleation. No significant difference in growth rate or maximum size of the bubbles was measured (p = 0.99 and 0.23). These results show that bubble nucleation is dominated by DO concentration (affected by cellular metabolism), rather than potential nucleation sites provided by cell-surfaces. Consequent bubble growth depends not only on DO concentration but also on competition for dissolved gas. Cell death was found to significantly increase (p = 0.0116) following a bubble-forming decompression. By comparison to 2D experiments; the more biomimetic 3D geometry and extracellular matrix in this work, provide data more applicable for understanding and developing models of in vivo bubble dynamics.

摘要

理解细胞-气泡相互作用对于预防与气泡相关的病变和利用其潜在的治疗益处至关重要。气泡可能由于治疗性静脉内给药、手术、感染或减压而在体内产生。随后与活细胞的相互作用可能导致病理反应,如减压病(DCS)。这项工作研究了在减压过程中形成的气泡与 3D 工程组织模型中的细胞之间发生的相互作用。增加组织模型的细胞密度会导致溶解氧(DO)浓度降低(p=0.0003),这是通过实时 DO 监测测量得出的。对这些模型的直接显微镜观察显示,气泡成核显著减少(p=0.0024)。气泡的生长速率或最大尺寸没有显著差异(p=0.99 和 0.23)。这些结果表明,气泡成核主要由 DO 浓度(受细胞代谢影响)决定,而不是由细胞表面提供的潜在成核点决定。随后的气泡生长不仅取决于 DO 浓度,还取决于溶解气体的竞争。研究发现,在形成气泡的减压后,细胞死亡显著增加(p=0.0116)。与 2D 实验相比;这项工作中更仿生的 3D 几何形状和细胞外基质提供了更适用于理解和开发体内气泡动力学模型的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aded/5524813/09b8eb2d17ec/41598_2017_6678_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验