Suppr超能文献

疾病关联的遗传和功能特征解释了共病现象。

Genetic and functional characterization of disease associations explains comorbidity.

机构信息

Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), 08028, Barcelona, Spain.

Structural Bioinformatics Group, GRIB, IMIM, Department of Experimental and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Catalonia, Spain.

出版信息

Sci Rep. 2017 Jul 24;7(1):6207. doi: 10.1038/s41598-017-04939-4.

Abstract

Understanding relationships between diseases, such as comorbidities, has important socio-economic implications, ranging from clinical study design to health care planning. Most studies characterize disease comorbidity using shared genetic origins, ignoring pathway-based commonalities between diseases. In this study, we define the disease pathways using an interactome-based extension of known disease-genes and introduce several measures of functional overlap. The analysis reveals 206 significant links among 94 diseases, giving rise to a highly clustered disease association network. We observe that around 95% of the links in the disease network, though not identified by genetic overlap, are discovered by functional overlap. This disease network portraits rheumatoid arthritis, asthma, atherosclerosis, pulmonary diseases and Crohn's disease as hubs and thus pointing to common inflammatory processes underlying disease pathophysiology. We identify several described associations such as the inverse comorbidity relationship between Alzheimer's disease and neoplasms. Furthermore, we investigate the disruptions in protein interactions by mapping mutations onto the domains involved in the interaction, suggesting hypotheses on the causal link between diseases. Finally, we provide several proof-of-principle examples in which we model the effect of the mutation and the change of the association strength, which could explain the observed comorbidity between diseases caused by the same genetic alterations.

摘要

理解疾病之间的关系,如共病,具有重要的社会经济意义,从临床研究设计到医疗保健规划都有涉及。大多数研究通过共享遗传起源来描述疾病的共病,而忽略了疾病之间基于途径的共性。在这项研究中,我们使用已知疾病-基因的互作组扩展来定义疾病途径,并引入了几种功能重叠的度量。分析揭示了 94 种疾病之间的 206 个显著联系,从而产生了一个高度聚类的疾病关联网络。我们观察到,在疾病网络中的大约 95%的联系,尽管不是通过遗传重叠识别的,但通过功能重叠发现的。该疾病网络描绘了类风湿关节炎、哮喘、动脉粥样硬化、肺部疾病和克罗恩病为中心,从而指向疾病病理生理学下的共同炎症过程。我们确定了一些已描述的关联,如阿尔茨海默病和肿瘤之间的反向共病关系。此外,我们通过将突变映射到相互作用涉及的域上来研究蛋白质相互作用的中断,提出了关于疾病之间因果关系的假说。最后,我们提供了几个原理证明的例子,我们在其中模拟了突变和关联强度变化的影响,这可以解释由相同遗传改变引起的疾病之间的观察到的共病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ced8/5524755/9de517407bdd/41598_2017_4939_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验