Suppr超能文献

利用真菌 Mariannaea sp. HJ 进行金纳米粒子的绿色合成及其在 4-硝基苯酚还原反应中的催化作用。

Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol.

机构信息

State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.

Hebei Morlans Environmental Technology Co., Ltd., Shijiazhuang, 050035, China.

出版信息

Environ Sci Pollut Res Int. 2017 Sep;24(27):21649-21659. doi: 10.1007/s11356-017-9684-z. Epub 2017 Jul 27.

Abstract

In the present study, biosynthesis of gold nanoparticles (AuNPs) by the cells (cells-AuNPs) and cell-free extracts (extracts-AuNPs) of a new fungus Mariannaea sp. HJ was reported. The as-synthesized particles were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The effects of different parameters on AuNP biosynthesis were investigated, and initial gold ion concentration of 2 mM, pH 7, was demonstrated to be suitable for both cells-AuNP and extracts-AuNP syntheses. The cells-AuNPs were of various shapes, including sphere, hexagon, and irregular shapes, with an average size of 37.4 nm, while the extracts-AuNPs were almost spherical and pseudo-spherical with an average size of 11.7 nm. XRD pattern suggested that the crystal structure of both AuNPs was face-centered cubic. FTIR spectra implied that some biomolecules from the fungal cell walls or cell-free extracts were involved in the formation of AuNPs. The as-synthesized AuNPs were demonstrated to have excellent catalytic activities for the reduction of 4-nitrophenol with the catalytic rate constants of 5.7 × 10/s for cells-AuNPs and 24.7 × 10/s for extracts-AuNPs. To the best of our knowledge, this is the first report on AuNP biosynthesis by Mariannaea sp.

摘要

在本研究中,报道了一种新型真菌 Mariannaea sp. HJ 的细胞(细胞-AuNPs)和无细胞提取物(提取物-AuNPs)合成金纳米粒子(AuNPs)。所合成的颗粒通过紫外-可见光谱、透射电子显微镜(TEM)、X 射线衍射(XRD)和傅里叶变换红外光谱(FTIR)进行了表征。研究了不同参数对 AuNP 生物合成的影响,结果表明初始金离子浓度为 2 mM、pH 7 适用于细胞-AuNP 和提取物-AuNP 的合成。细胞-AuNPs 的形状各异,包括球形、六边形和不规则形状,平均尺寸为 37.4nm,而提取物-AuNPs 几乎呈球形和类球形,平均尺寸为 11.7nm。XRD 图谱表明,两种 AuNPs 的晶体结构均为面心立方。FTIR 光谱表明,真菌细胞壁或无细胞提取物中的一些生物分子参与了 AuNPs 的形成。所合成的 AuNPs 对 4-硝基苯酚的还原具有优异的催化活性,细胞-AuNPs 的催化速率常数为 5.7×10/s,提取物-AuNPs 的催化速率常数为 24.7×10/s。据我们所知,这是 Mariannaea sp. 首次报道用于 AuNP 生物合成。

相似文献

1
Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol.
Environ Sci Pollut Res Int. 2017 Sep;24(27):21649-21659. doi: 10.1007/s11356-017-9684-z. Epub 2017 Jul 27.
2
Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au.
J Hazard Mater. 2017 Jan 5;321:299-306. doi: 10.1016/j.jhazmat.2016.07.051. Epub 2016 Jul 21.
3
[Characterization of Au-Ag nanoparticles biosynthesized by fungus Mariannaea sp. HJ].
Sheng Wu Gong Cheng Xue Bao. 2019 Nov 25;35(11):2061-2068. doi: 10.13345/j.cjb.190160.
4
Biosynthesis of gold nanoparticles using cell-free extracts of Magnusiomyces ingens LH-F1 for nitrophenols reduction.
Bioprocess Biosyst Eng. 2018 Mar;41(3):359-367. doi: 10.1007/s00449-017-1869-9. Epub 2017 Nov 29.
6
Comparison of gold nanoparticles biosynthesized by cell-free extracts of Labrys, Trichosporon montevideense, and Aspergillus.
Environ Sci Pollut Res Int. 2018 May;25(14):13626-13632. doi: 10.1007/s11356-017-1050-7. Epub 2018 Mar 2.
10
Biogenic synthesis of gold nanoparticles and their application in photocatalytic degradation of toxic dyes.
J Photochem Photobiol B. 2018 Sep;186:51-58. doi: 10.1016/j.jphotobiol.2018.07.002. Epub 2018 Jul 7.

引用本文的文献

2
Reduction of 4-nitrophenol using green-fabricated metal nanoparticles.
RSC Adv. 2022 Jun 24;12(29):18661-18675. doi: 10.1039/d2ra02663e. eCollection 2022 Jun 22.
3
Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications.
Int J Nanomedicine. 2019 Sep 19;14:7643-7663. doi: 10.2147/IJN.S223941. eCollection 2019.
5
Green synthesis of silver and gold nanoparticles using Stemona tuberosa Lour and screening for their catalytic activity in the degradation of toxic chemicals.
Environ Sci Pollut Res Int. 2018 Nov;25(32):32540-32548. doi: 10.1007/s11356-018-3105-9. Epub 2018 Sep 20.

本文引用的文献

2
Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs.
Acta Biomater. 2016 Jan;30:397-407. doi: 10.1016/j.actbio.2015.10.041. Epub 2015 Oct 27.
5
Extracellular synthesis of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial, antioxidant and cytotoxic activities.
Bioprocess Biosyst Eng. 2015 Jun;38(6):1167-77. doi: 10.1007/s00449-015-1358-y. Epub 2015 Feb 3.
6
Fungal biosynthesis of gold nanoparticles: mechanism and scale up.
Microb Biotechnol. 2015 Nov;8(6):904-17. doi: 10.1111/1751-7915.12151. Epub 2014 Aug 26.
7
Applications of biosynthesized metallic nanoparticles - a review.
Acta Biomater. 2014 Oct;10(10):4023-42. doi: 10.1016/j.actbio.2014.05.022. Epub 2014 Jun 9.
8
Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp.
Bioresour Technol. 2014 Aug;166:235-42. doi: 10.1016/j.biortech.2014.04.085. Epub 2014 May 9.
9
Microbial synthesis of gold nanoparticles: current status and future prospects.
Adv Colloid Interface Sci. 2014 Jul;209:40-8. doi: 10.1016/j.cis.2013.12.011. Epub 2014 Jan 2.
10
Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation.
Crit Rev Biotechnol. 2015 Mar;35(1):114-28. doi: 10.3109/07388551.2013.819484. Epub 2013 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验