Suppr超能文献

直面歧义:用于蛋白质四级结构分配的离子淌度-质谱分析。

Coming to Grips with Ambiguity: Ion Mobility-Mass Spectrometry for Protein Quaternary Structure Assignment.

机构信息

Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

J Am Soc Mass Spectrom. 2017 Oct;28(10):1991-2000. doi: 10.1007/s13361-017-1757-1. Epub 2017 Jul 27.

Abstract

Multiprotein complexes are central to our understanding of cellular biology, as they play critical roles in nearly every biological process. Despite many impressive advances associated with structural characterization techniques, large and highly-dynamic protein complexes are too often refractory to analysis by conventional, high-resolution approaches. To fill this gap, ion mobility-mass spectrometry (IM-MS) methods have emerged as a promising approach for characterizing the structures of challenging assemblies due in large part to the ability of these methods to characterize the composition, connectivity, and topology of large, labile complexes. In this Critical Insight, we present a series of bioinformatics studies aimed at assessing the information content of IM-MS datasets for building models of multiprotein structure. Our computational data highlights the limits of current coarse-graining approaches, and compelled us to develop an improved workflow for multiprotein topology modeling, which we benchmark against a subset of the multiprotein complexes within the PDB. This improved workflow has allowed us to ascertain both the minimal experimental restraint sets required for generation of high-confidence multiprotein topologies, and quantify the ambiguity in models where insufficient IM-MS information is available. We conclude by projecting the future of IM-MS in the context of protein quaternary structure assignment, where we predict that a more complete knowledge of the ultimate information content and ambiguity within such models will undoubtedly lead to applications for a broader array of challenging biomolecular assemblies. Graphical Abstract ᅟ.

摘要

多蛋白复合物是我们理解细胞生物学的核心,因为它们在几乎每一个生物过程中都起着关键作用。尽管与结构特征技术相关的许多令人印象深刻的进展,大型和高度动态的蛋白质复合物往往难以通过传统的高分辨率方法进行分析。为了填补这一空白,离子淌度-质谱(IM-MS)方法已经成为一种很有前途的方法,可以用于研究具有挑战性的组装结构,这在很大程度上是因为这些方法能够描述大型、不稳定复合物的组成、连接性和拓扑结构。在这篇重要见解中,我们提出了一系列旨在评估 IM-MS 数据集在构建多蛋白结构模型方面的信息量的生物信息学研究。我们的计算数据突出了当前粗粒化方法的局限性,并促使我们开发了一种改进的多蛋白拓扑建模工作流程,我们将其与 PDB 中多蛋白复合物的子集进行了基准测试。这种改进的工作流程使我们能够确定生成高可信度多蛋白拓扑所需的最小实验约束集,并量化在可用的 IM-MS 信息不足的情况下模型中的歧义。最后,我们通过在蛋白质四级结构分配的背景下预测 IM-MS 的未来,预测到这些模型中最终信息内容和歧义的更完整的知识将无疑导致更广泛的具有挑战性的生物分子组装的应用。

相似文献

1
Coming to Grips with Ambiguity: Ion Mobility-Mass Spectrometry for Protein Quaternary Structure Assignment.
J Am Soc Mass Spectrom. 2017 Oct;28(10):1991-2000. doi: 10.1007/s13361-017-1757-1. Epub 2017 Jul 27.
2
Ion mobility-mass spectrometry as a tool to investigate protein-ligand interactions.
Anal Bioanal Chem. 2017 Jul;409(18):4305-4310. doi: 10.1007/s00216-017-0384-9. Epub 2017 May 13.
3
Collidoscope: An Improved Tool for Computing Collisional Cross-Sections with the Trajectory Method.
J Am Soc Mass Spectrom. 2017 Apr;28(4):587-596. doi: 10.1007/s13361-017-1594-2. Epub 2017 Feb 13.
4
Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase.
Acc Chem Res. 2014 Apr 15;47(4):1010-8. doi: 10.1021/ar400223t. Epub 2014 Feb 13.
5
The application of ion-mobility mass spectrometry for structure/function investigation of protein complexes.
Curr Opin Chem Biol. 2018 Feb;42:25-33. doi: 10.1016/j.cbpa.2017.10.026. Epub 2017 Nov 9.
6
Recent advances in ion mobility-mass spectrometry for improved structural characterization of glycans and glycoconjugates.
Curr Opin Chem Biol. 2018 Feb;42:1-8. doi: 10.1016/j.cbpa.2017.10.007. Epub 2017 Nov 5.
8
Predicting Ion Mobility-Mass Spectrometry trends of polymers using the concept of apparent densities.
Methods. 2018 Jul 15;144:125-133. doi: 10.1016/j.ymeth.2018.03.010. Epub 2018 Mar 28.
9
Bridging the structural gap of glycoproteomics with ion mobility spectrometry.
Curr Opin Chem Biol. 2018 Feb;42:86-92. doi: 10.1016/j.cbpa.2017.11.012. Epub 2017 Dec 1.
10
Characterization of Membrane Protein-Lipid Interactions by Mass Spectrometry Ion Mobility Mass Spectrometry.
J Am Soc Mass Spectrom. 2017 Apr;28(4):579-586. doi: 10.1007/s13361-016-1555-1. Epub 2016 Dec 6.

引用本文的文献

1
HDXRank: A Deep Learning Framework for Ranking Protein Complex Predictions with Hydrogen-Deuterium Exchange Data.
J Chem Theory Comput. 2025 Jul 22;21(14):7173-7187. doi: 10.1021/acs.jctc.5c00175. Epub 2025 May 14.
3
Are the Gas-Phase Structures of Molecular Elephants Enduring or Ephemeral? Results from Time-Dependent, Tandem Ion Mobility.
Anal Chem. 2023 Jun 27;95(25):9589-9597. doi: 10.1021/acs.analchem.3c01222. Epub 2023 Jun 9.
5
Simulation of Energy-Resolved Mass Spectrometry Distributions from Surface-Induced Dissociation.
Anal Chem. 2022 Jul 26;94(29):10506-10514. doi: 10.1021/acs.analchem.2c01869. Epub 2022 Jul 14.
6
Collision Cross Sections for Native Proteomics: Challenges and Opportunities.
J Proteome Res. 2022 Jan 7;21(1):2-8. doi: 10.1021/acs.jproteome.1c00686. Epub 2021 Nov 30.
7
Approaches to Heterogeneity in Native Mass Spectrometry.
Chem Rev. 2022 Apr 27;122(8):7909-7951. doi: 10.1021/acs.chemrev.1c00696. Epub 2021 Sep 1.
9
Prediction of Protein Complex Structure Using Surface-Induced Dissociation and Cryo-Electron Microscopy.
Anal Chem. 2021 Jun 1;93(21):7596-7605. doi: 10.1021/acs.analchem.0c05468. Epub 2021 May 17.
10
Hybrid methods for combined experimental and computational determination of protein structure.
J Chem Phys. 2020 Dec 28;153(24):240901. doi: 10.1063/5.0026025.

本文引用的文献

1
Surface Accessibility and Dynamics of Macromolecular Assemblies Probed by Covalent Labeling Mass Spectrometry and Integrative Modeling.
Anal Chem. 2017 Feb 7;89(3):1459-1468. doi: 10.1021/acs.analchem.6b02875. Epub 2017 Jan 18.
2
Chemical Probes and Engineered Constructs Reveal a Detailed Unfolding Mechanism for a Solvent-Free Multidomain Protein.
J Am Chem Soc. 2017 Jan 11;139(1):534-540. doi: 10.1021/jacs.6b11678. Epub 2016 Dec 21.
3
Towards the Analysis of High Molecular Weight Proteins and Protein complexes using TIMS-MS.
Int J Ion Mobil Spectrom. 2016 Sep;19(2):95-104. doi: 10.1007/s12127-016-0201-8. Epub 2016 Jun 7.
4
Mass-spectrometric exploration of proteome structure and function.
Nature. 2016 Sep 15;537(7620):347-55. doi: 10.1038/nature19949.
5
Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations.
Anal Chem. 2016 Sep 20;88(18):8949-8956. doi: 10.1021/acs.analchem.6b01914. Epub 2016 Aug 12.
7
Characterizing Protein-Protein Interactions Using Mass Spectrometry: Challenges and Opportunities.
Trends Biotechnol. 2016 Oct;34(10):825-834. doi: 10.1016/j.tibtech.2016.02.014. Epub 2016 Mar 17.
9
Single-particle cryo-electron microscopy of macromolecular complexes.
Microscopy (Oxf). 2016 Feb;65(1):9-22. doi: 10.1093/jmicro/dfv366. Epub 2015 Nov 25.
10
Towards integrative structural mass spectrometry: Benefits from hybrid approaches.
Methods. 2015 Nov 1;89:4-12. doi: 10.1016/j.ymeth.2015.05.024. Epub 2015 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验