Suppr超能文献

全激酶组范围内对重新连接癌症信号通路的网络攻击突变进行解码。

Kinome-wide decoding of network-attacking mutations rewiring cancer signaling.

作者信息

Creixell Pau, Schoof Erwin M, Simpson Craig D, Longden James, Miller Chad J, Lou Hua Jane, Perryman Lara, Cox Thomas R, Zivanovic Nevena, Palmeri Antonio, Wesolowska-Andersen Agata, Helmer-Citterich Manuela, Ferkinghoff-Borg Jesper, Itamochi Hiroaki, Bodenmiller Bernd, Erler Janine T, Turk Benjamin E, Linding Rune

机构信息

Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark.

Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), 2200 Copenhagen, Denmark.

出版信息

Cell. 2015 Sep 24;163(1):202-17. doi: 10.1016/j.cell.2015.08.056. Epub 2015 Sep 17.

Abstract

Cancer cells acquire pathological phenotypes through accumulation of mutations that perturb signaling networks. However, global analysis of these events is currently limited. Here, we identify six types of network-attacking mutations (NAMs), including changes in kinase and SH2 modulation, network rewiring, and the genesis and extinction of phosphorylation sites. We developed a computational platform (ReKINect) to identify NAMs and systematically interpreted the exomes and quantitative (phospho-)proteomes of five ovarian cancer cell lines and the global cancer genome repository. We identified and experimentally validated several NAMs, including PKCγ M501I and PKD1 D665N, which encode specificity switches analogous to the appearance of kinases de novo within the kinome. We discover mutant molecular logic gates, a drift toward phospho-threonine signaling, weakening of phosphorylation motifs, and kinase-inactivating hotspots in cancer. Our method pinpoints functional NAMs, scales with the complexity of cancer genomes and cell signaling, and may enhance our capability to therapeutically target tumor-specific networks.

摘要

癌细胞通过积累扰乱信号网络的突变而获得病理表型。然而,目前对这些事件的全面分析仍很有限。在此,我们识别出六种类型的网络攻击突变(NAMs),包括激酶和SH2调节的变化、网络重排以及磷酸化位点的产生和消失。我们开发了一个计算平台(ReKINect)来识别NAMs,并系统地解读了五个卵巢癌细胞系的外显子组和定量(磷酸化)蛋白质组以及全球癌症基因组库。我们识别并通过实验验证了几种NAMs,包括PKCγ M501I和PKD1 D665N,它们编码的特异性开关类似于激酶组中从头出现的激酶。我们发现了突变分子逻辑门、向磷酸苏氨酸信号传导的漂移、磷酸化基序的减弱以及癌症中的激酶失活热点。我们的方法能够精准定位功能性NAMs,可随着癌症基因组和细胞信号传导的复杂性而扩展,并且可能增强我们针对肿瘤特异性网络进行治疗的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b3/4644236/89c9a1da6c5e/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验