Suppr超能文献

IPs-GRUAtt:一种基于注意力机制的双向门控循环单元网络,用于预测新型冠状病毒感染的磷酸化位点

IPs-GRUAtt: An attention-based bidirectional gated recurrent unit network for predicting phosphorylation sites of SARS-CoV-2 infection.

作者信息

Zhang Guiyang, Tang Qiang, Feng Pengmian, Chen Wei

机构信息

State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.

出版信息

Mol Ther Nucleic Acids. 2023 Jun 13;32:28-35. doi: 10.1016/j.omtn.2023.02.027. Epub 2023 Feb 26.

Abstract

The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has generated tremendous concern and poses a serious threat to international public health. Phosphorylation is a common post-translational modification affecting many essential cellular processes and is inextricably linked to SARS-CoV-2 infection. Hence, accurate identification of phosphorylation sites will be helpful to understand the mechanisms of SARS-CoV-2 infection and mitigate the ongoing COVID-19 pandemic. In the present study, an attention-based bidirectional gated recurrent unit network, called IPs-GRUAtt, was proposed to identify phosphorylation sites in SARS-CoV-2-infected host cells. Comparative results demonstrated that IPs-GRUAtt surpassed both state-of-the-art machine-learning methods and existing models for identifying phosphorylation sites. Moreover, the attention mechanism made IPs-GRUAtt able to extract the key features from protein sequences. These results demonstrated that the IPs-GRUAtt is a powerful tool for identifying phosphorylation sites. For facilitating its academic use, a freely available online web server for IPs-GRUAtt is provided at http://cbcb.cdutcm.edu.cn/phosphory/.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染的全球大流行引起了极大关注,并对国际公共卫生构成严重威胁。磷酸化是一种常见的翻译后修饰,影响许多重要的细胞过程,并且与SARS-CoV-2感染有着千丝万缕的联系。因此,准确识别磷酸化位点将有助于理解SARS-CoV-2感染的机制,并缓解当前的COVID-19大流行。在本研究中,提出了一种基于注意力的双向门控循环单元网络,称为IPs-GRUAtt,用于识别SARS-CoV-2感染的宿主细胞中的磷酸化位点。比较结果表明,IPs-GRUAtt超过了最先进的机器学习方法和现有的磷酸化位点识别模型。此外,注意力机制使IPs-GRUAtt能够从蛋白质序列中提取关键特征。这些结果表明,IPs-GRUAtt是识别磷酸化位点的有力工具。为便于其学术使用,在http://cbcb.cdutcm.edu.cn/phosphory/提供了一个免费的IPs-GRUAtt在线网络服务器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d08/10025107/647a9720e913/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验