文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用梯度接收线圈实现对超顺磁性氧化铁粒子的皮克级检测。

Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil.

机构信息

Institute of Medical Engineering, University of Lübeck, Lubeck, Germany.

Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

Sci Rep. 2017 Jul 31;7(1):6872. doi: 10.1038/s41598-017-06992-5.


DOI:10.1038/s41598-017-06992-5
PMID:28761103
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5537232/
Abstract

Superparamagnetic iron-oxide nanoparticles can be used in medical applications like vascular or targeted imaging. Magnetic particle imaging (MPI) is a promising tomographic imaging technique that allows visualizing the 3D nanoparticle distribution concentration in a non-invasive manner. The two main strengths of MPI are high temporal resolution and high sensitivity. While the first has been proven in the assessment of dynamic processes like cardiac imaging, it is unknown how far the detection limit of MPI can be lowered. Within this work, we will present a highly sensitive gradiometric receive-coil unit combined with a noise-matching network tailored for the imaging of mice. The setup is capable of detecting 5 ng of iron in-vitro with an acquisition time of 2.14 sec. In terms of iron concentration we are able to detect 156 μg/L marking the lowest value that has been reported for an MPI scanner so far. In-vivo MPI mouse images of a 512 ng bolus and a 21.5 ms acquisition time allow for capturing the flow of an intravenously injected tracer through the heart of a mouse. Since it has been rather difficult to compare detection limits across MPI publications we propose guidelines to improve the comparability of future MPI studies.

摘要

超顺磁氧化铁纳米颗粒可用于血管或靶向成像等医学应用。磁粒子成像 (MPI) 是一种很有前途的层析成像技术,可实现对 3D 纳米颗粒分布浓度的非侵入式可视化。MPI 的两个主要优势是高时间分辨率和高灵敏度。虽然前者已在心脏成像等动态过程的评估中得到证实,但 MPI 的检测极限能降低到多低还不得而知。在这项工作中,我们将展示一种与噪声匹配网络相结合的高灵敏度梯度接收线圈单元,该网络专为小鼠成像而设计。该设备能够在 2.14 秒的采集时间内检测到 5ng 的铁,其检测灵敏度为 5ng,是迄今为止报道的 MPI 扫描仪中最低的。对 512ng 团注和 21.5ms 采集时间的体内 MPI 小鼠图像进行分析,可以捕获通过静脉注射示踪剂在小鼠心脏内的流动情况。由于很难在 MPI 文献中比较检测极限,因此我们提出了一些指南,以提高未来 MPI 研究的可比性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/8973afb2cb97/41598_2017_6992_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/16c4ba42dc09/41598_2017_6992_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/957b7a9e51a8/41598_2017_6992_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/12cd6e4f1d23/41598_2017_6992_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/4f5ad5ef60c9/41598_2017_6992_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/b643c721d41c/41598_2017_6992_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/c3940a822f64/41598_2017_6992_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/cdff4f75b075/41598_2017_6992_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/da080c6b4d5a/41598_2017_6992_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/8973afb2cb97/41598_2017_6992_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/16c4ba42dc09/41598_2017_6992_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/957b7a9e51a8/41598_2017_6992_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/12cd6e4f1d23/41598_2017_6992_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/4f5ad5ef60c9/41598_2017_6992_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/b643c721d41c/41598_2017_6992_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/c3940a822f64/41598_2017_6992_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/cdff4f75b075/41598_2017_6992_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/da080c6b4d5a/41598_2017_6992_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a260/5537232/8973afb2cb97/41598_2017_6992_Fig9_HTML.jpg

相似文献

[1]
Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil.

Sci Rep. 2017-7-31

[2]
Improved sensitivity and limit-of-detection using a receive-only coil in magnetic particle imaging.

Phys Med Biol. 2018-7-2

[3]
Implementation of the surface gradiometer receive coils for the improved detection limit and sensitivity in the single-sided MPI scanner.

Phys Med Biol. 2022-12-9

[4]
Magnetic particle imaging: current developments and future directions.

Int J Nanomedicine. 2015-4-22

[5]
Deep learning for improving the spatial resolution of magnetic particle imaging.

Phys Med Biol. 2022-6-10

[6]
Magnetic Particle Imaging (MPI): Experimental Quantification of Vascular Stenosis Using Stationary Stenosis Phantoms.

PLoS One. 2017-1-5

[7]
Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells.

Int J Nanomedicine. 2014-10-29

[8]
Magnetic Particle Imaging: A Resovist Based Marking Technology for Guide Wires and Catheters for Vascular Interventions.

IEEE Trans Med Imaging. 2016-4-27

[9]
Comparison of commercial iron oxide-based MRI contrast agents with synthesized high-performance MPI tracers.

Biomed Tech (Berl). 2013-12

[10]
Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging.

IEEE Trans Med Imaging. 2014-10-24

引用本文的文献

[1]
Exploring the diagnostic potential: magnetic particle imaging for brain diseases.

Mil Med Res. 2025-4-27

[2]
Advances in engineering nanoparticles for magnetic particle imaging (MPI).

Sci Adv. 2025-1-10

[3]
Design, construction and validation of a magnetic particle imaging (MPI) system for human brain imaging.

Phys Med Biol. 2025-1-6

[4]
Roadmap on magnetic nanoparticles in nanomedicine.

Nanotechnology. 2024-11-5

[5]
Open-source device for high sensitivity magnetic particle spectroscopy, relaxometry, and hysteresis loop tracing.

Rev Sci Instrum. 2024-6-1

[6]
Integrable Magnetic Fluid Hyperthermia Systems for 3D Magnetic Particle Imaging.

Nanotheranostics. 2024

[7]
In vivo tracking of adenoviral-transduced iron oxide-labeled bone marrow-derived dendritic cells using magnetic particle imaging.

Eur Radiol Exp. 2023-8-15

[8]
Inter-user Comparison for Quantification of Superparamagnetic Iron Oxides with Magnetic Particle Imaging Across Two Institutions Highlights a Need for Standardized Approaches.

Mol Imaging Biol. 2023-10

[9]
iMPI: portable human-sized magnetic particle imaging scanner for real-time endovascular interventions.

Sci Rep. 2023-6-28

[10]
Inter-user comparison for quantification of superparamagnetic iron oxides with magnetic particle imaging across two institutions highlights a need for standardized approaches.

bioRxiv. 2023-4-5

本文引用的文献

[1]
Two dimensional magnetic particle spectrometry.

Phys Med Biol. 2017-5-7

[2]
Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging.

Nanoscale. 2017-1-19

[3]
A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization.

Sci Rep. 2016-9-30

[4]
Multi-color magnetic particle imaging for cardiovascular interventions.

Phys Med Biol. 2016-8-21

[5]
Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers.

Med Phys. 2016-6

[6]
Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach.

PLoS One. 2016-6-1

[7]
Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging.

Phys Med Biol. 2016-5-7

[8]
Quantitative "Hot Spot" Imaging of Transplanted Stem Cells using Superparamagnetic Tracers and Magnetic Particle Imaging (MPI).

Tomography. 2015-12

[9]
Sensitivity Enhancement in Magnetic Particle Imaging by Background Subtraction.

IEEE Trans Med Imaging. 2016-3

[10]
Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast.

Sci Rep. 2015-9-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索