文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

跨两个机构使用磁粒子成像对超顺磁性氧化铁进行定量的用户间比较凸显了标准化方法的必要性。

Inter-user comparison for quantification of superparamagnetic iron oxides with magnetic particle imaging across two institutions highlights a need for standardized approaches.

作者信息

Good Hayden J, Sehl Olivia C, Gevaert Julia J, Yu Bo, Berih Maryam A, Montero Sebastian A, Rinaldi-Ramos Carlos M, Foster Paula J

机构信息

Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America.

Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada.

出版信息

bioRxiv. 2023 Apr 5:2023.04.03.535446. doi: 10.1101/2023.04.03.535446.


DOI:10.1101/2023.04.03.535446
PMID:37066180
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10104026/
Abstract

PURPOSE: Magnetic particle imaging (MPI) is being explored in biological contexts that require accurate and reproducible quantification of superparamagnetic iron oxide nanoparticles (SPIONs). While many groups have focused on improving imager and SPION design to improve resolution and sensitivity, few have focused on improving quantification and reproducibility of MPI. The aim of this study was to compare MPI quantification results by two different systems and the accuracy of SPION quantification performed by multiple users at two institutions. PROCEDURES: Six users (3 from each institute) imaged a known amount of Vivotrax+ (10 μg Fe), diluted in a small (10 μL) or large (500 μL) volume. These samples were imaged with or without calibration standards in the field of view, to create a total of 72 images (6 users x triplicate samples x 2 sample volumes x 2 calibration methods). These images were analyzed by the respective user with two region of interest (ROI) selection methods. Image intensities, Vivotrax+ quantification, and ROI selection was compared across users, within and across institutions. RESULTS: MPI imagers at two different institutes produce significantly different signal intensities, that differ by over 3 times for the same concentration of Vivotrax+. Overall quantification yielded measurements that were within ± 20% from ground truth, however SPION quantification values obtained at each laboratory were significantly different. Results suggest that the use of different imagers had a stronger influence on SPION quantification compared to differences arising from user error. Lastly, calibration conducted from samples in the imaging field of view gave the same quantification results as separately imaged samples. CONCLUSIONS: This study highlights that there are many factors that contribute to the accuracy and reproducibility of MPI quantification, including variation between MPI imagers and users, despite pre-defined experimental set up, image acquisition parameters, and ROI selection analysis.

摘要

目的:在需要对超顺磁性氧化铁纳米颗粒(SPIONs)进行准确且可重复定量的生物学环境中,人们正在探索磁粒子成像(MPI)技术。虽然许多研究团队专注于改进成像仪和SPION设计以提高分辨率和灵敏度,但很少有人关注提高MPI定量和可重复性。本研究的目的是比较两个不同系统的MPI定量结果,以及两个机构的多个用户进行的SPION定量的准确性。 程序:六名用户(每个机构三名)对已知量的Vivotrax +(10μg铁)进行成像,其分别稀释于小体积(10μL)或大体积(500μL)中。这些样品在视野中有或没有校准标准的情况下进行成像,共生成72张图像(6名用户×三份重复样品×2种样品体积×2种校准方法)。这些图像由各自的用户使用两种感兴趣区域(ROI)选择方法进行分析。比较了不同用户之间、机构内部和机构之间的图像强度、Vivotrax +定量以及ROI选择情况。 结果:两个不同机构的MPI成像仪产生的信号强度存在显著差异,对于相同浓度的Vivotrax +,差异超过3倍。总体定量结果与真实值的偏差在±20%以内,然而每个实验室获得的SPION定量值存在显著差异。结果表明,与用户误差产生的差异相比,使用不同成像仪对SPION定量的影响更大。最后,在成像视野中对样品进行校准得到的定量结果与单独成像的样品相同。 结论:本研究强调,尽管有预定义的实验设置、图像采集参数和ROI选择分析,但仍有许多因素会影响MPI定量测量的准确性和可重复性,包括MPI成像仪和用户之间的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/80edc7e2bff3/nihpp-2023.04.03.535446v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/aecb605fa434/nihpp-2023.04.03.535446v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/25bfcef4675f/nihpp-2023.04.03.535446v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/ede7a4f2f271/nihpp-2023.04.03.535446v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/1fceb19ca73c/nihpp-2023.04.03.535446v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/1310bd89b242/nihpp-2023.04.03.535446v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/80edc7e2bff3/nihpp-2023.04.03.535446v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/aecb605fa434/nihpp-2023.04.03.535446v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/25bfcef4675f/nihpp-2023.04.03.535446v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/ede7a4f2f271/nihpp-2023.04.03.535446v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/1fceb19ca73c/nihpp-2023.04.03.535446v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/1310bd89b242/nihpp-2023.04.03.535446v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7c/10104026/80edc7e2bff3/nihpp-2023.04.03.535446v1-f0006.jpg

相似文献

[1]
Inter-user comparison for quantification of superparamagnetic iron oxides with magnetic particle imaging across two institutions highlights a need for standardized approaches.

bioRxiv. 2023-4-5

[2]
Inter-user Comparison for Quantification of Superparamagnetic Iron Oxides with Magnetic Particle Imaging Across Two Institutions Highlights a Need for Standardized Approaches.

Mol Imaging Biol. 2023-10

[3]
Progress in magnetic particle imaging signal and iron quantification methods - application to long circulating SPIONs.

Nanoscale Adv. 2023-8-18

[4]
Mixed Metal Metal-Organic Frameworks Derived Carbon Supporting ZnFeO/C for High-Performance Magnetic Particle Imaging.

Nano Lett. 2021-4-14

[5]
Artificial Intelligence Analysis of Magnetic Particle Imaging for Islet Transplantation in a Mouse Model.

Mol Imaging Biol. 2021-2

[6]
Magnetic particle imaging: current developments and future directions.

Int J Nanomedicine. 2015-4-22

[7]
Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.

Med Phys. 2013-7

[8]
Improved Quantitative Analysis Method for Magnetic Particle Imaging Based on Deblurring and Region Scalable Fitting.

Mol Imaging Biol. 2023-8

[9]
Magnetic particle imaging for artifact-free imaging of intracranial flow diverter stents: A phantom study.

Phys Med. 2021-8

[10]
Tomographic Field Free Line Magnetic Particle Imaging With an Open-Sided Scanner Configuration.

IEEE Trans Med Imaging. 2020-12

本文引用的文献

[1]
An anatomically correct 3D-printed mouse phantom for magnetic particle imaging studies.

Bioeng Transl Med. 2022-3-1

[2]
Tracking adoptive T cell immunotherapy using magnetic particle imaging.

Nanotheranostics. 2021

[3]
Emerging Biomedical Applications Based on the Response of Magnetic Nanoparticles to Time-Varying Magnetic Fields.

Annu Rev Chem Biomol Eng. 2021-6-7

[4]
Magnetic Particle Imaging of Macrophages Associated with Cancer: Filling the Voids Left by Iron-Based Magnetic Resonance Imaging.

Mol Imaging Biol. 2020-8

[5]
Trimodal Cell Tracking In Vivo: Combining Iron- and Fluorine-Based Magnetic Resonance Imaging with Magnetic Particle Imaging to Monitor the Delivery of Mesenchymal Stem Cells and the Ensuing Inflammation.

Tomography. 2019-12

[6]
Human-sized magnetic particle imaging for brain applications.

Nat Commun. 2019-4-26

[7]
A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging.

AJNR Am J Neuroradiol. 2019-1-17

[8]
Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications.

Adv Drug Deliv Rev. 2018-12-13

[9]
In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring.

Theranostics. 2018-6-8

[10]
Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models.

Quant Imaging Med Surg. 2018-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索