Casati Nicola, Genoni Alessandro, Meyer Benjamin, Krawczuk Anna, Macchi Piero
Swiss Light Source, Material Science Beamline, Paul Scherrer Institute, Villigen, Switzerland.
CNRS, Laboratoire SRSMC, UMR 7565, Boulevard des Aiguillettes BP 70239, F-54506 Vandoeuvre-lès-Nancy, France.
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2017 Aug 1;73(Pt 4):584-597. doi: 10.1107/S2052520617008356. Epub 2017 Jul 26.
The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.
低温下X射线和中子衍射设备的良好结合、从实验数据中提炼出的简化但精确的电子密度模型的发展以及电荷密度分析(通常与理论工作相结合)的进展,激发了在晶体中确定电子密度分布的可能性,这是一项巨大的突破。在首次成功进行电荷密度测定和分析多年后,科学家们面临着新的挑战,例如:(i)确定原子核中电子密度分布的更精细细节;(ii)同时精炼电子电荷和自旋密度;或(iii)在微扰下测量晶体。在这种背景下,最近已经证明了在高压下获得实验电荷密度的可能性[卡萨蒂等人(2016年)。《自然·通讯》7,10901]。本文报告了这一新挑战的必要性和陷阱,重点关注syn-1,6:8,13-二羰基[14]轮烯物种。详细讨论了实验要求、预期的数据质量和数据校正,包括对可能缺点的警告。同时,提出了新的建模技术,这些技术能够从有限且不太精确的观测中提取特定信息,比如双键的定位程度,这对于所研究的科学案例至关重要。