Suppr超能文献

基于慢性延时钙成像数据的星形胶质细胞自动功能分析

Automated Functional Analysis of Astrocytes from Chronic Time-Lapse Calcium Imaging Data.

作者信息

Wang Yinxue, Shi Guilai, Miller David J, Wang Yizhi, Wang Congchao, Broussard Gerard, Wang Yue, Tian Lin, Yu Guoqiang

机构信息

Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State UniversityArlington, VA, United States.

Department of Biochemistry and Molecular Medicine, University of California Davis School of MedicineDavis, CA, United States.

出版信息

Front Neuroinform. 2017 Jul 14;11:48. doi: 10.3389/fninf.2017.00048. eCollection 2017.

Abstract

Recent discoveries that astrocytes exert proactive regulatory effects on neural information processing and that they are deeply involved in normal brain development and disease pathology have stimulated broad interest in understanding astrocyte functional roles in brain circuit. Measuring astrocyte functional status is now technically feasible, due to recent advances in modern microscopy and ultrasensitive cell-type specific genetically encoded Ca indicators for chronic imaging. However, there is a big gap between the capability of generating large dataset via calcium imaging and the availability of sophisticated analytical tools for decoding the astrocyte function. Current practice is essentially manual, which not only limits analysis throughput but also risks introducing bias and missing important information latent in complex, dynamic big data. Here, we report a suite of computational tools, called Functional AStrocyte Phenotyping (FASP), for automatically quantifying the functional status of astrocytes. Considering the complex nature of Ca signaling in astrocytes and low signal to noise ratio, FASP is designed with data-driven and probabilistic principles, to flexibly account for various patterns and to perform robustly with noisy data. In particular, FASP explicitly models signal propagation, which rules out the applicability of tools designed for other types of data. We demonstrate the effectiveness of FASP using extensive synthetic and real data sets. The findings by FASP were verified by manual inspection. FASP also detected signals that were missed by purely manual analysis but could be confirmed by more careful manual examination under the guidance of automatic analysis. All algorithms and the analysis pipeline are packaged into a plugin for Fiji (ImageJ), with the source code freely available online at https://github.com/VTcbil/FASP.

摘要

最近的发现表明,星形胶质细胞对神经信息处理发挥着积极的调节作用,并且它们深度参与正常脑发育和疾病病理学过程,这激发了人们对理解星形胶质细胞在脑回路中功能作用的广泛兴趣。由于现代显微镜技术以及用于长期成像的超灵敏细胞类型特异性基因编码钙指示剂的最新进展,目前在技术上已能够测量星形胶质细胞的功能状态。然而,通过钙成像生成大型数据集的能力与用于解码星形胶质细胞功能的复杂分析工具的可用性之间存在很大差距。当前的做法基本上是手动的,这不仅限制了分析通量,而且还可能引入偏差并遗漏复杂动态大数据中潜在的重要信息。在此,我们报告了一套名为功能星形胶质细胞表型分析(FASP)的计算工具,用于自动量化星形胶质细胞的功能状态。考虑到星形胶质细胞中钙信号的复杂性和低信噪比,FASP采用数据驱动和概率原理进行设计,以灵活处理各种模式并在有噪声的数据上稳健运行。特别是,FASP明确地对信号传播进行建模,这排除了为其他类型数据设计的工具的适用性。我们使用大量的合成数据集和真实数据集证明了FASP的有效性。FASP的发现通过人工检查得到了验证。FASP还检测到了纯手动分析遗漏的信号,但在自动分析的指导下通过更仔细的人工检查可以得到确认。所有算法和分析管道都被打包成一个用于Fiji(ImageJ)的插件,其源代码可在https://github.com/VTcbil/FASP上免费在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6357/5509822/0b91097c63e9/fninf-11-00048-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验