Suppr超能文献

SIMA:用于分析动态荧光成像数据的 Python 软件。

SIMA: Python software for analysis of dynamic fluorescence imaging data.

机构信息

Department of Neuroscience, Columbia University in the City of New York New York, NY, USA.

出版信息

Front Neuroinform. 2014 Sep 23;8:80. doi: 10.3389/fninf.2014.00080. eCollection 2014.

Abstract

Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous system. However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools. To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging. Functionality of this package includes correction of motion artifacts occurring during in vivo imaging with laser-scanning microscopy, segmentation of imaged fields into regions of interest (ROIs), and extraction of signals from the segmented ROIs. We have also developed a graphical user interface (GUI) for manual editing of the automatically segmented ROIs and automated registration of ROIs across multiple imaging datasets. This software has been designed with flexibility in mind to allow for future extension with different analysis methods and potential integration with other packages. Software, documentation, and source code for the SIMA package and ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/.

摘要

荧光成像是一种用于监测神经系统中动态信号的强大方法。然而,动态荧光成像数据的分析仍然很繁琐,部分原因是可用的软件工具短缺。为了解决这一需求,我们开发了 SIMA,这是一个开源的 Python 包,它为与荧光成像相关的常见分析任务提供便利。该软件包的功能包括校正激光扫描显微镜体内成像过程中发生的运动伪影、将成像区域分割成感兴趣区域 (ROI),以及从分割的 ROI 中提取信号。我们还开发了一个图形用户界面 (GUI),用于手动编辑自动分割的 ROI,并在多个成像数据集之间自动注册 ROI。该软件的设计具有灵活性,可用于未来扩展不同的分析方法,并有可能与其他软件包集成。SIMA 软件包和 ROI Buddy GUI 的软件、文档和源代码可在 http://www.losonczylab.org/sima/ 上免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0347/4172099/b0da939809f2/fninf-08-00080-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验