Suppr超能文献

砷的超积累策略:综述

Arsenic Hyperaccumulation Strategies: An Overview.

作者信息

Souri Zahra, Karimi Naser, Sandalio Luisa M

机构信息

Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi UniversityKermanshah, Iran.

Laboratory of Oxygen and Nitrogen Species Signalling Under Plant Stress Conditions, Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain.

出版信息

Front Cell Dev Biol. 2017 Jul 18;5:67. doi: 10.3389/fcell.2017.00067. eCollection 2017.

Abstract

Arsenic (As) pollution, which is on the increase around the world, poses a growing threat to the environment. Phytoremediation, an important green technology, uses different strategies, including As uptake, transport, translocation, and detoxification, to remediate this metalloid. Arsenic hyperaccumulator plants have developed various strategies to accumulate and tolerate high concentrations of As. In these plants, the formation of AsIII complexes with GSH and phytochelatins and their transport into root and shoot vacuoles constitute important mechanisms for coping with As stress. The oxidative stress induced by reactive oxygen species (ROS) production is one of the principal toxic effects of As; moreover, the strong antioxidative defenses in hyperaccumulator plants could constitute an important As detoxification strategy. On the other hand, nitric oxide activates antioxidant enzyme and phytochelatins biosynthesis which enhances As stress tolerance in plants. Although several studies have focused on transcription, metabolomics, and proteomic changes in plants induced by As, the mechanisms involved in As transport, translocation, and detoxification in hyperaccumulator plants need to be studied in greater depth. This review updates recent progress made in the study of As uptake, translocation, chelation, and detoxification in As hyperaccumulator plants.

摘要

砷(As)污染在全球范围内呈上升趋势,对环境构成日益严重的威胁。植物修复作为一项重要的绿色技术,采用包括砷吸收、运输、转运和解毒在内的不同策略来修复这种类金属。砷超富集植物已形成多种策略来积累和耐受高浓度的砷。在这些植物中,砷(III)与谷胱甘肽和植物螯合肽形成复合物并转运到根和茎的液泡中,是应对砷胁迫的重要机制。活性氧(ROS)产生所诱导的氧化应激是砷的主要毒性作用之一;此外,超富集植物中强大的抗氧化防御机制可能构成一种重要的砷解毒策略。另一方面,一氧化氮可激活抗氧化酶并促进植物螯合肽的生物合成,从而增强植物对砷胁迫的耐受性。尽管已有多项研究聚焦于砷诱导的植物转录、代谢组学和蛋白质组学变化,但超富集植物中砷的运输、转运和解毒机制仍需更深入的研究。本综述更新了砷超富集植物在砷吸收、转运、螯合和解毒研究方面的最新进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c79/5513893/d602107d6bfa/fcell-05-00067-g0001.jpg

相似文献

1
Arsenic Hyperaccumulation Strategies: An Overview.
Front Cell Dev Biol. 2017 Jul 18;5:67. doi: 10.3389/fcell.2017.00067. eCollection 2017.
2
Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation.
J Trace Elem Med Biol. 2005;18(4):339-53. doi: 10.1016/j.jtemb.2005.02.007.
3
Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
Environ Sci Pollut Res Int. 2009 Nov;16(7):795-804. doi: 10.1007/s11356-009-0168-7. Epub 2009 May 22.
4
Arsenic in the hyperaccumulator Pteris vittata: A review of benefits, toxicity, and metabolism.
Sci Total Environ. 2023 Oct 20;896:165232. doi: 10.1016/j.scitotenv.2023.165232. Epub 2023 Jun 29.
5
Phytochelatins: Sulfur-Containing Metal(loid)-Chelating Ligands in Plants.
Int J Mol Sci. 2023 Jan 26;24(3):2430. doi: 10.3390/ijms24032430.
6
Implications of metal accumulation mechanisms to phytoremediation.
Environ Sci Pollut Res Int. 2009 Mar;16(2):162-75. doi: 10.1007/s11356-008-0079-z. Epub 2008 Dec 6.
7
Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
Rev Environ Contam Toxicol. 2014;232:1-44. doi: 10.1007/978-3-319-06746-9_1.
8
[Mechanisms of heavy metal cadmium tolerance in plants].
Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 2006 Feb;32(1):1-8.
9
Compartmentation and complexation of metals in hyperaccumulator plants.
Front Plant Sci. 2013 Sep 20;4:374. doi: 10.3389/fpls.2013.00374.

引用本文的文献

1
Plant traits regulated metal(loid)s in dominant herbs in an antimony mining area of the karst zone, China.
Ecol Evol. 2024 Aug 23;14(8):e70212. doi: 10.1002/ece3.70212. eCollection 2024 Aug.
3
From genes to ecosystems: Decoding plant tolerance mechanisms to arsenic stress.
Heliyon. 2024 Apr 2;10(7):e29140. doi: 10.1016/j.heliyon.2024.e29140. eCollection 2024 Apr 15.
4
Research progress of the detection and analysis methods of heavy metals in plants.
Front Plant Sci. 2024 Jan 31;15:1310328. doi: 10.3389/fpls.2024.1310328. eCollection 2024.
6
Methylation of arsenic in rice: Mechanisms, factors, and mitigation strategies.
Toxicol Rep. 2023 Sep 25;11:295-306. doi: 10.1016/j.toxrep.2023.09.018. eCollection 2023 Dec.
9
The complete chloroplast genome of Desv. (Brassicaceae).
Mitochondrial DNA B Resour. 2022 May 12;7(5):846-847. doi: 10.1080/23802359.2022.2074802. eCollection 2022.

本文引用的文献

1
Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata.
New Phytol. 2002 Nov;156(2):195-203. doi: 10.1046/j.1469-8137.2002.00512.x.
3
OsHAC1;1 and OsHAC1;2 Function as Arsenate Reductases and Regulate Arsenic Accumulation.
Plant Physiol. 2016 Nov;172(3):1708-1719. doi: 10.1104/pp.16.01332. Epub 2016 Oct 4.
4
Nitric Oxide Mediated Transcriptome Profiling Reveals Activation of Multiple Regulatory Pathways in Arabidopsis thaliana.
Front Plant Sci. 2016 Jun 29;7:975. doi: 10.3389/fpls.2016.00975. eCollection 2016.
5
Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods.
Annu Rev Plant Biol. 2016 Apr 29;67:489-512. doi: 10.1146/annurev-arplant-043015-112301. Epub 2016 Jan 21.
6
Nitric Oxide Level Is Self-Regulating and Also Regulates Its ROS Partners.
Front Plant Sci. 2016 Mar 17;7:316. doi: 10.3389/fpls.2016.00316. eCollection 2016.
7
Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds.
Nat Plants. 2015 Dec 21;2(1):15202. doi: 10.1038/nplants.2015.202. eCollection 2016 Jan.
8
Nitric Oxide Alleviated Arsenic Toxicity by Modulation of Antioxidants and Thiol Metabolism in Rice (Oryza sativa L.).
Front Plant Sci. 2016 Jan 12;6:1272. doi: 10.3389/fpls.2015.01272. eCollection 2015.
9
NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity.
Plant Cell Environ. 2017 Apr;40(4):509-526. doi: 10.1111/pce.12711. Epub 2016 Apr 1.
10
Nitric oxide function in plant abiotic stress.
Plant Cell Environ. 2017 Apr;40(4):462-472. doi: 10.1111/pce.12707. Epub 2016 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验