Suppr超能文献

对微生物群落的时间序列数据进行建模。

Modeling time-series data from microbial communities.

作者信息

Ridenhour Benjamin J, Brooker Sarah L, Williams Janet E, Van Leuven James T, Miller Aaron W, Dearing M Denise, Remien Christopher H

机构信息

Department of Biological Sciences, University of Idaho, Moscow, ID, USA.

Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID, USA.

出版信息

ISME J. 2017 Nov;11(11):2526-2537. doi: 10.1038/ismej.2017.107. Epub 2017 Aug 8.

Abstract

As sequencing technologies have advanced, the amount of information regarding the composition of bacterial communities from various environments (for example, skin or soil) has grown exponentially. To date, most work has focused on cataloging taxa present in samples and determining whether the distribution of taxa shifts with exogenous covariates. However, important questions regarding how taxa interact with each other and their environment remain open thus preventing in-depth ecological understanding of microbiomes. Time-series data from 16S rDNA amplicon sequencing are becoming more common within microbial ecology, but methods to infer ecological interactions from these longitudinal data are limited. We address this gap by presenting a method of analysis using Poisson regression fit with an elastic-net penalty that (1) takes advantage of the fact that the data are time series; (2) constrains estimates to allow for the possibility of many more interactions than data; and (3) is scalable enough to handle data consisting of thousands of taxa. We test the method on gut microbiome data from white-throated woodrats (Neotoma albigula) that were fed varying amounts of the plant secondary compound oxalate over a period of 22 days to estimate interactions between OTUs and their environment.

摘要

随着测序技术的不断进步,来自各种环境(如皮肤或土壤)的细菌群落组成信息呈指数级增长。迄今为止,大多数工作都集中在对样本中存在的分类单元进行编目,并确定分类单元的分布是否随外生协变量而变化。然而,关于分类单元如何相互作用以及它们与环境如何相互作用的重要问题仍然悬而未决,因此阻碍了对微生物群落进行深入的生态学理解。来自16S rDNA扩增子测序的时间序列数据在微生物生态学中越来越普遍,但从这些纵向数据推断生态相互作用的方法却很有限。我们通过提出一种使用泊松回归拟合弹性网络惩罚的分析方法来填补这一空白,该方法(1)利用数据是时间序列这一事实;(2)对估计值进行约束,以允许存在比数据更多的相互作用;(3)具有足够的可扩展性来处理由数千个分类单元组成的数据。我们用来自白喉林鼠(Neotoma albigula)的肠道微生物群落数据测试了该方法,这些白喉林鼠在22天的时间里被喂食了不同量的植物次生化合物草酸盐,以估计操作分类单元(OTU)与其环境之间的相互作用。

相似文献

1
Modeling time-series data from microbial communities.对微生物群落的时间序列数据进行建模。
ISME J. 2017 Nov;11(11):2526-2537. doi: 10.1038/ismej.2017.107. Epub 2017 Aug 8.
9
Lineage-dependent ecological coherence in bacteria.细菌的谱系依赖性生态一致性。
FEMS Microbiol Ecol. 2012 Sep;81(3):574-82. doi: 10.1111/j.1574-6941.2012.01387.x. Epub 2012 May 23.
10
Global-Scale Structure of the Eelgrass Microbiome.鳗草微生物组的全球尺度结构
Appl Environ Microbiol. 2017 May 31;83(12). doi: 10.1128/AEM.03391-16. Print 2017 Jun 15.

引用本文的文献

3
Interpolation of microbiome composition in longitudinal data sets.纵向数据集的微生物组组成内插。
mBio. 2024 Sep 11;15(9):e0115024. doi: 10.1128/mbio.01150-24. Epub 2024 Aug 20.
5
Prediction and analysis of time series data based on granular computing.基于粒度计算的时间序列数据预测与分析
Front Comput Neurosci. 2023 Jul 27;17:1192876. doi: 10.3389/fncom.2023.1192876. eCollection 2023.
6
Microbial Growth under Limiting Conditions-Future Perspectives.有限条件下的微生物生长——未来展望
Microorganisms. 2023 Jun 23;11(7):1641. doi: 10.3390/microorganisms11071641.
10
Temporal Alignment of Longitudinal Microbiome Data.纵向微生物组数据的时间对齐
Front Microbiol. 2022 Jun 22;13:909313. doi: 10.3389/fmicb.2022.909313. eCollection 2022.

本文引用的文献

3
Universality of human microbial dynamics.人类微生物动态变化的普遍性。
Nature. 2016 Jun 9;534(7606):259-62. doi: 10.1038/nature18301.
9
Microbial "social networks".微生物“社交网络”。
BMC Genomics. 2015;16 Suppl 11(Suppl 11):S6. doi: 10.1186/1471-2164-16-S11-S6. Epub 2015 Nov 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验