Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary.
Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232, Villigen, Switzerland.
Sci Rep. 2017 Aug 8;7(1):7584. doi: 10.1038/s41598-017-07996-x.
The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaVSe, a polar magnet with easy-plane anisotropy, hosts a robust Néel-type SkL even in its ground state. Our supporting theory confirms that polar magnets with weak uniaxial anisotropy are ideal candidates to realize SkLs with wide stability ranges.
螺旋态晶格(SkL)是一种由介观自旋涡旋组成的晶体,通过迄今为止已知的所有体相 skyrmion 主体材料的热涨落获得稳定性。因此,它的存在仅限于顺磁态以下的狭窄温度区域。在具有受限几何形状的系统中,如薄膜、界面和纳米线,其稳定性范围可以大大增加。热猝灭也可以促进 SkL 作为亚稳态存在于扩展的温度范围内。在这里,我们更普遍地证明,仅通过适当选择材料参数就可以保证 SkL 在顺磁态以下的整个温度范围内的热力学稳定性,直至绝对零度。我们发现,具有易面各向异性的极性磁体 GaVSe 甚至在其基态下也存在稳定的奈尔型 SkL。我们的支持理论证实,具有弱单轴各向异性的极性磁体是实现具有宽稳定范围的 SkL 的理想候选者。