Ghaisari Sara, Winklhofer Michael, Strauch Peter, Klumpp Stefan, Faivre Damien
Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
IBU, School of Mathematics and Science, University of Oldenburg, Oldenburg, Germany.
Biophys J. 2017 Aug 8;113(3):637-644. doi: 10.1016/j.bpj.2017.06.031.
Magnetotactic bacteria form assemblies of magnetic nanoparticles called magnetosomes. These magnetosomes are typically arranged in chains, but other forms of assemblies such as clusters can be observed in some species and genetic mutants. As such, the bacteria have developed as a model for the understanding of how organization of particles can influence the magnetic properties. Here, we use ferromagnetic resonance spectroscopy to measure the magnetic anisotropies in different strains of Magnetosprillum gryphiswaldense MSR-1, a bacterial species that is amendable to genetic mutations. We combine our experimental results with a model describing the spectra. The model includes chain imperfections and misalignments following a Fisher distribution function, in addition to the intrinsic magnetic properties of the magnetosomes. Therefore, by applying the model to analyze the ferromagnetic resonance data, the distribution of orientations in the bulk sample can be retrieved in addition to the average magnetosome arrangement. In this way, we quantitatively characterize the magnetosome arrangement in both wild-type cells and ΔmamJ mutants, which exhibit differing magnetosome organization.
趋磁细菌形成称为磁小体的磁性纳米颗粒聚集体。这些磁小体通常排列成链状,但在某些物种和基因突变体中可以观察到其他形式的聚集体,如簇状。因此,细菌已发展成为一种模型,用于理解颗粒的组织方式如何影响磁性。在这里,我们使用铁磁共振光谱来测量不同菌株的趋磁螺菌(Magnetosprillum gryphiswaldense)MSR-1中的磁各向异性,该细菌物种易于发生基因突变。我们将实验结果与描述光谱的模型相结合。该模型除了包括磁小体的固有磁性外,还包括遵循费舍尔分布函数的链缺陷和错位。因此,通过应用该模型分析铁磁共振数据,除了平均磁小体排列外,还可以获取大量样品中的取向分布。通过这种方式,我们定量表征了野生型细胞和ΔmamJ突变体中的磁小体排列,它们表现出不同的磁小体组织。