Han Zhi, Johnson Travis, Zhang Jie, Zhang Xuan, Huang Kun
College of Software, Nankai University, Tianjin, China.
Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
Biomed Res Int. 2017;2017:3035481. doi: 10.1155/2017/3035481. Epub 2017 Jul 17.
We presented a novel workflow for detecting distribution patterns in cell populations based on single-cell transcriptome study. With the fast adoption of single-cell analysis, a challenge to researchers is how to effectively extract gene features to meaningfully separate the cell population. Considering that coexpressed genes are often functionally or structurally related and the number of coexpressed modules is much smaller than the number of genes, our workflow uses gene coexpression modules as features instead of individual genes. Thus, when the coexpressed modules are summarized into eigengenes, not only can we interactively explore the distribution of cells but also we can promptly interpret the gene features. The interactive visualization is aided by a novel application of spatial statistical analysis to the scatter plots using a clustering index parameter. This parameter helps to highlight interesting 2D patterns in the scatter plot matrix (SPLOM). We demonstrated the effectiveness of the workflow using two large single-cell studies. In the Allen Brain scRNA-seq dataset, the visual analytics suggested a new hypothesis such as the involvement of glutamate metabolism in the separation of the brain cells. In a large glioblastoma study, a sample with a unique cell migration related signature was identified.
我们基于单细胞转录组研究提出了一种用于检测细胞群体分布模式的新型工作流程。随着单细胞分析的迅速普及,研究人员面临的一个挑战是如何有效地提取基因特征以有意义地分离细胞群体。考虑到共表达基因通常在功能或结构上相关,并且共表达模块的数量远小于基因数量,我们的工作流程使用基因共表达模块作为特征而非单个基因。因此,当将共表达模块汇总为特征基因时,我们不仅可以交互式地探索细胞分布,还可以迅速解释基因特征。交互式可视化借助空间统计分析在散点图上的新颖应用以及一个聚类索引参数得以实现。该参数有助于突出散点图矩阵(SPLOM)中有趣的二维模式。我们使用两项大型单细胞研究证明了该工作流程的有效性。在艾伦脑单细胞RNA测序数据集中,视觉分析提出了一个新假设,例如谷氨酸代谢在脑细胞分离中的作用。在一项大型胶质母细胞瘤研究中,识别出了一个具有独特细胞迁移相关特征的样本。