Beckwith Esteban J, Hernando Carlos E, Polcowñuk Sofía, Bertolin Agustina P, Mancini Estefania, Ceriani M Fernanda, Yanovsky Marcelo J
Laboratorio de Genómica Comparativa del Desarrollo Vegetal, Fundación Instituto Leloir, Instituto de Investigeciones Bioquimicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1417, Argentina.
Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, Instituto de Investigeciones Bioquimicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1417, Argentina.
Genetics. 2017 Oct;207(2):593-607. doi: 10.1534/genetics.117.300139. Epub 2017 Aug 11.
Circadian clocks organize the metabolism, physiology, and behavior of organisms throughout the day-night cycle by controlling daily rhythms in gene expression at the transcriptional and post-transcriptional levels. While many transcription factors underlying circadian oscillations are known, the splicing factors that modulate these rhythms remain largely unexplored. A genome-wide assessment of the alterations of gene expression in a null mutant of the alternative splicing regulator SR-related matrix protein of 160 kDa (SRm160) revealed the extent to which alternative splicing impacts on behavior-related genes. We show that affects gene expression in pacemaker neurons of the brain to ensure proper oscillations of the molecular clock. A reduced level of SRm160 in adult pacemaker neurons impairs circadian rhythms in locomotor behavior, and this phenotype is caused, at least in part, by a marked reduction in () levels. Moreover, rhythmic accumulation of the neuropeptide PIGMENT DISPERSING FACTOR in the dorsal projections of these neurons is abolished after SRm160 depletion. The lack of rhythmicity in SRm160-downregulated flies is reversed by a fully spliced construct, but not by an extra copy of the endogenous locus, showing that positively regulates levels in a splicing-dependent manner. Our findings highlight the significant effect of alternative splicing on the nervous system and particularly on brain function in an model.
昼夜节律时钟通过在转录和转录后水平控制基因表达的每日节律,在昼夜循环中组织生物体的新陈代谢、生理和行为。虽然已知许多参与昼夜节律振荡的转录因子,但调节这些节律的剪接因子在很大程度上仍未被探索。对160 kDa替代剪接调节因子SR相关基质蛋白(SRm160)的无效突变体中基因表达变化的全基因组评估揭示了替代剪接对行为相关基因的影响程度。我们表明, 影响大脑起搏神经元中的基因表达,以确保分子时钟的适当振荡。成年起搏神经元中SRm160水平的降低会损害运动行为的昼夜节律,并且这种表型至少部分是由 () 水平的显著降低引起的。此外,在SRm160缺失后,这些神经元背侧投射中神经肽色素分散因子的节律性积累被消除。SRm160下调的果蝇中缺乏节律性可通过完全剪接的 构建体逆转,但不能通过内源性基因座的额外拷贝逆转,这表明 以剪接依赖的方式正向调节 水平。我们的研究结果突出了替代剪接对神经系统,特别是对 模型中脑功能的显著影响。