Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, USA.
Department of Medicine, University of California, San Francisco, CA, 94158, USA.
Sci Rep. 2017 Aug 11;7(1):7903. doi: 10.1038/s41598-017-08415-x.
Occult bacterial infections represent a worldwide health problem. Differentiating active bacterial infection from sterile inflammation can be difficult using current imaging tools. Present clinically viable methodologies either detect morphologic changes (CT/ MR), recruitment of immune cells (In-WBC SPECT), or enhanced glycolytic flux seen in inflammatory cells (F-FDG PET). However, these strategies are often inadequate to detect bacterial infection and are not specific for living bacteria. Recent approaches have taken advantage of key metabolic differences between prokaryotic and eukaryotic organisms, allowing easier distinction between bacteria and their host. In this report, we exploited one key difference, bacterial cell wall biosynthesis, to detect living bacteria using a positron-labeled D-amino acid. After screening several C D-amino acids for their incorporation into E. coli in culture, we identified D-methionine as a probe with outstanding radiopharmaceutical potential. Based on an analogous procedure to that used for L-[methyl-C]methionine ([C] L-Met), we developed an enhanced asymmetric synthesis of D-[methyl-C]methionine ([C] D-Met), and showed that it can rapidly and selectively differentiate both E. coli and S. aureus infections from sterile inflammation in vivo. We believe that the ease of [C] D-Met radiosynthesis, coupled with its rapid and specific in vivo bacterial accumulation, make it an attractive radiotracer for infection imaging in clinical practice.
隐匿性细菌感染是一个全球性的健康问题。目前的影像学工具很难区分活动性细菌感染和无菌性炎症。目前临床上可行的方法要么检测形态学变化(CT/MR),要么检测免疫细胞募集(In-WBC SPECT),要么检测炎症细胞中增强的糖酵解通量(F-FDG PET)。然而,这些策略往往不足以检测细菌感染,并且对活细菌不具有特异性。最近的方法利用了原核生物和真核生物之间关键的代谢差异,使得更容易区分细菌与其宿主。在本报告中,我们利用细菌细胞壁生物合成的一个关键差异,使用正电子标记的 D-氨基酸来检测活细菌。在筛选了几种 C D-氨基酸在培养的大肠杆菌中的掺入情况后,我们确定 D-蛋氨酸是一种具有突出放射性药物潜力的探针。基于与 L-[甲基-C]蛋氨酸 ([C] L-Met) 相同的方法,我们开发了一种增强的 D-[甲基-C]蛋氨酸 ([C] D-Met) 的不对称合成方法,并表明它可以快速和选择性地区分大肠杆菌和金黄色葡萄球菌感染与无菌性炎症。我们认为 [C] D-Met 放射性合成的简便性,加上其在体内快速而特异性的细菌积累,使其成为感染成像在临床实践中具有吸引力的示踪剂。