Suppr超能文献

基于大规模字典的磁共振指纹成像的低秩逼近方法。

Low rank approximation methods for MR fingerprinting with large scale dictionaries.

机构信息

Department of Radiology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.

出版信息

Magn Reson Med. 2018 Apr;79(4):2392-2400. doi: 10.1002/mrm.26867. Epub 2017 Aug 13.

Abstract

PURPOSE

This work proposes new low rank approximation approaches with significant memory savings for large scale MR fingerprinting (MRF) problems.

THEORY AND METHODS

We introduce a compressed MRF with randomized singular value decomposition method to significantly reduce the memory requirement for calculating a low rank approximation of large sized MRF dictionaries. We further relax this requirement by exploiting the structures of MRF dictionaries in the randomized singular value decomposition space and fitting them to low-degree polynomials to generate high resolution MRF parameter maps. In vivo 1.5T and 3T brain scan data are used to validate the approaches.

RESULTS

T , T , and off-resonance maps are in good agreement with that of the standard MRF approach. Moreover, the memory savings is up to 1000 times for the MRF-fast imaging with steady-state precession sequence and more than 15 times for the MRF-balanced, steady-state free precession sequence.

CONCLUSION

The proposed compressed MRF with randomized singular value decomposition and dictionary fitting methods are memory efficient low rank approximation methods, which can benefit the usage of MRF in clinical settings. They also have great potentials in large scale MRF problems, such as problems considering multi-component MRF parameters or high resolution in the parameter space. Magn Reson Med 79:2392-2400, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

摘要

目的

本研究提出了新的低秩逼近方法,可显著节省大规模磁共振指纹成像(MRF)问题的内存。

理论与方法

我们引入了一种基于随机奇异值分解的压缩式 MRF,可显著降低计算大型 MRF 字典低秩逼近所需的内存。我们进一步利用随机奇异值分解空间中 MRF 字典的结构,并将其拟合到低阶多项式中,从而生成高分辨率的 MRF 参数图,以放宽这一要求。使用 1.5T 和 3T 体内脑扫描数据来验证这些方法。

结果

T 1 、T 2 和离频图与标准 MRF 方法的结果吻合良好。此外,与 MRF-快速稳态进动序列相比,记忆节省高达 1000 倍,与 MRF-平衡稳态自由进动序列相比,记忆节省超过 15 倍。

结论

所提出的基于随机奇异值分解和字典拟合的压缩式 MRF 是一种高效的低秩逼近方法,可使 MRF 在临床环境中的应用受益。它们在大规模 MRF 问题中也具有很大的潜力,例如考虑多分量 MRF 参数或参数空间中的高分辨率的问题。磁共振医学 79:2392-2400,2018。©2017 国际磁共振医学学会。

相似文献

1
Low rank approximation methods for MR fingerprinting with large scale dictionaries.
Magn Reson Med. 2018 Apr;79(4):2392-2400. doi: 10.1002/mrm.26867. Epub 2017 Aug 13.
2
Low rank alternating direction method of multipliers reconstruction for MR fingerprinting.
Magn Reson Med. 2018 Jan;79(1):83-96. doi: 10.1002/mrm.26639. Epub 2017 Mar 5.
3
MR fingerprinting for rapid quantification of myocardial T , T , and proton spin density.
Magn Reson Med. 2017 Apr;77(4):1446-1458. doi: 10.1002/mrm.26216. Epub 2016 Apr 1.
4
MRF-ZOOM for the unbalanced steady-state free precession (ubSSFP) magnetic resonance fingerprinting.
Magn Reson Imaging. 2020 Jan;65:146-154. doi: 10.1016/j.mri.2019.11.010. Epub 2019 Nov 11.
5
Use of pattern recognition for unaliasing simultaneously acquired slices in simultaneous multislice MR fingerprinting.
Magn Reson Med. 2017 Nov;78(5):1870-1876. doi: 10.1002/mrm.26572. Epub 2016 Dec 26.
6
Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T and T2∗ relaxation times.
Magn Reson Med. 2017 Nov;78(5):1724-1733. doi: 10.1002/mrm.26561. Epub 2016 Dec 16.
7
Sparsity and locally low rank regularization for MR fingerprinting.
Magn Reson Med. 2019 Jun;81(6):3530-3543. doi: 10.1002/mrm.27665. Epub 2019 Feb 5.
8
Deep learning-assisted preclinical MR fingerprinting for sub-millimeter T and T mapping of entire macaque brain.
Magn Reson Med. 2024 Mar;91(3):1149-1164. doi: 10.1002/mrm.29905. Epub 2023 Nov 6.
9
Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.
Magn Reson Med. 2018 Feb;79(2):933-942. doi: 10.1002/mrm.26701. Epub 2017 Apr 15.

引用本文的文献

1
Contrastive Learning for Accelerated MR Fingerprinting.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2025 May;33.
5
SuperMRF: deep robust reconstruction for highly accelerated magnetic resonance fingerprinting.
Quant Imaging Med Surg. 2025 Apr 1;15(4):3480-3500. doi: 10.21037/qims-23-1819. Epub 2025 Mar 28.
6
Quantitative molecular imaging using deep magnetic resonance fingerprinting.
Nat Protoc. 2025 Apr 1. doi: 10.1038/s41596-025-01152-w.
7
UltimateSynth: MRI Physics for Pan-Contrast AI.
bioRxiv. 2024 Dec 10:2024.12.05.627056. doi: 10.1101/2024.12.05.627056.
9
Cramér-Rao Bound Optimized Subspace Reconstruction in Quantitative MRI.
IEEE Trans Biomed Eng. 2025 Jan;72(1):217-226. doi: 10.1109/TBME.2024.3446763. Epub 2025 Jan 15.
10
Robust Highly-accelerated MR Fingerprinting Using Transformer-based Deep Learning.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2024 May;32.

本文引用的文献

1
AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting.
Magn Reson Imaging. 2017 Sep;41:29-40. doi: 10.1016/j.mri.2017.07.007. Epub 2017 Jul 14.
2
MR fingerprinting reconstruction with Kalman filter.
Magn Reson Imaging. 2017 Sep;41:53-62. doi: 10.1016/j.mri.2017.04.004. Epub 2017 Apr 19.
3
Optimal experiment design for magnetic resonance fingerprinting.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:453-456. doi: 10.1109/EMBC.2016.7590737.
4
Matrix completion-based reconstruction for undersampled magnetic resonance fingerprinting data.
Magn Reson Imaging. 2017 Sep;41:41-52. doi: 10.1016/j.mri.2017.02.007. Epub 2017 Mar 3.
5
Multiparametric imaging with heterogeneous radiofrequency fields.
Nat Commun. 2016 Aug 16;7:12445. doi: 10.1038/ncomms12445.
6
MR fingerprinting with simultaneous B1 estimation.
Magn Reson Med. 2016 Oct;76(4):1127-35. doi: 10.1002/mrm.26009. Epub 2015 Oct 28.
7
MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout.
Magn Reson Med. 2015 Dec;74(6):1621-31. doi: 10.1002/mrm.25559. Epub 2014 Dec 9.
8
Fast group matching for MR fingerprinting reconstruction.
Magn Reson Med. 2015 Aug;74(2):523-8. doi: 10.1002/mrm.25439. Epub 2014 Aug 28.
9
SVD compression for magnetic resonance fingerprinting in the time domain.
IEEE Trans Med Imaging. 2014 Dec;33(12):2311-22. doi: 10.1109/TMI.2014.2337321. Epub 2014 Jul 10.
10
Magnetic resonance fingerprinting.
Nature. 2013 Mar 14;495(7440):187-92. doi: 10.1038/nature11971.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验