Debye Institute for Nanomaterials Science, University of Utrecht , Princetonplein 1, 3584 CC Utrecht, The Netherlands.
Kavli Institute of Nanoscience, Delft University of Technology , 2628 CJ Delft, The Netherlands.
Nano Lett. 2017 Sep 13;17(9):5238-5243. doi: 10.1021/acs.nanolett.7b01348. Epub 2017 Aug 16.
Self-assembled nanocrystal solids show promise as a versatile platform for novel optoelectronic materials. Superlattices composed of a single layer of lead-chalcogenide and cadmium-chalcogenide nanocrystals with epitaxial connections between the nanocrystals, present outstanding questions to the community regarding their predicted band structure and electronic transport properties. However, the as-prepared materials are intrinsic semiconductors; to occupy the bands in a controlled way, chemical doping or external gating is required. Here, we show that square superlattices of PbSe nanocrystals can be incorporated as a nanocrystal monolayer in a transistor setup with an electrolyte gate. The electron (and hole) density can be controlled by the gate potential, up to 8 electrons per nanocrystal site. The electron mobility at room temperature is 18 cm/(V s). Our work forms a first step in the investigation of the band structure and electronic transport properties of two-dimensional nanocrystal superlattices with controlled geometry, chemical composition, and carrier density.
自组装纳米晶体固体有望成为新型光电材料的多功能平台。由单层铅-硫属化物和镉-硫属化物纳米晶体组成的超晶格,由于其预测的能带结构和电子输运性质,向科学界提出了一些突出的问题。然而,所制备的材料是本征半导体;为了以受控的方式占据能带,需要化学掺杂或外部门控。在这里,我们表明,PbSe 纳米晶体的正方形超晶格可以作为纳米晶体单层掺入具有电解质门的晶体管结构中。通过栅极电势可以控制电子(和空穴)密度,每个纳米晶位可达 8 个电子。在室温下的电子迁移率为 18 cm/(V s)。我们的工作是在具有受控几何形状、化学成分和载流子密度的二维纳米晶体超晶格的能带结构和电子输运性质研究方面迈出的第一步。