Senn Pascal, Roccio Marta, Hahnewald Stefan, Frick Claudia, Kwiatkowska Monika, Ishikawa Masaaki, Bako Peter, Li Hao, Edin Fredrik, Liu Wei, Rask-Andersen Helge, Pyykkö Ilmari, Zou Jing, Mannerström Marika, Keppner Herbert, Homsy Alexandra, Laux Edith, Llera Miguel, Lellouche Jean-Paul, Ostrovsky Stella, Banin Ehud, Gedanken Aharon, Perkas Nina, Wank Ute, Wiesmüller Karl-Heinz, Mistrík Pavel, Benav Heval, Garnham Carolyn, Jolly Claude, Gander Filippo, Ulrich Peter, Müller Marcus, Löwenheim Hubert
*University Department of ORL, Head & Neck Surgery, Inselspital †Department of Clinical Research, University of Bern, Bern, Switzerland ‡Department of Otorhinolaryngology-Head & Neck Surgery, University of Tübingen, Tübingen, Germany §Department of Surgical Sciences, Section of ORL, Uppsala University, Uppsala, Sweden ||Hearing and Balance Research Unit, Department of Otorhinolaryngology and The Finnish Centre for Alternative Methods, University of Tampere, Tampere, Finland ¶Haute Ecole Arc Ingénierie, HES-SO - University of Applied Sciences Western Switzerland, La Chaux-de-Fonds #Department of Chemistry, The Center for Advanced Materials and Nanotechnology and The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel **EMC Microcollections GmbH, Tübingen, Germany ††MED-EL GmbH, Worldwide Headquarters, Innsbruck, Austria ‡‡SCIPROM Sàrl, Rue du Centre 70, St-Sulpice §§Department of Clinical Neurosciences, Service of ORL and HNS, HUG, University Hospital of Geneva, Geneva, Switzerland.
Otol Neurotol. 2017 Sep;38(8):e224-e231. doi: 10.1097/MAO.0000000000001439.
: Cochlear implants (CI) restore functional hearing in the majority of deaf patients. Despite the tremendous success of these devices, some limitations remain. The bottleneck for optimal electrical stimulation with CI is caused by the anatomical gap between the electrode array and the auditory neurons in the inner ear. As a consequence, current devices are limited through 1) low frequency resolution, hence sub-optimal sound quality and 2), large stimulation currents, hence high energy consumption (responsible for significant battery costs and for impeding the development of fully implantable systems). A recently completed, multinational and interdisciplinary project called NANOCI aimed at overcoming current limitations by creating a gapless interface between auditory nerve fibers and the cochlear implant electrode array. This ambitious goal was achieved in vivo by neurotrophin-induced attraction of neurites through an intracochlear gel-nanomatrix onto a modified nanoCI electrode array located in the scala tympani of deafened guinea pigs. Functionally, the gapless interface led to lower stimulation thresholds and a larger dynamic range in vivo, and to reduced stimulation energy requirement (up to fivefold) in an in vitro model using auditory neurons cultured on multi-electrode arrays. In conclusion, the NANOCI project yielded proof of concept that a gapless interface between auditory neurons and cochlear implant electrode arrays is feasible. These findings may be of relevance for the development of future CI systems with better sound quality and performance and lower energy consumption. The present overview/review paper summarizes the NANOCI project history and highlights achievements of the individual work packages.
人工耳蜗(CI)可使大多数失聪患者恢复功能性听力。尽管这些设备取得了巨大成功,但仍存在一些局限性。CI实现最佳电刺激的瓶颈是由内耳中电极阵列与听觉神经元之间的解剖学间隙造成的。因此,当前的设备存在以下限制:1)低频分辨率低,导致声音质量欠佳;2)刺激电流大,导致能量消耗高(这造成了高昂的电池成本,并阻碍了完全可植入系统的发展)。最近完成的一个名为NANOCI的跨国跨学科项目旨在通过在听觉神经纤维与人工耳蜗电极阵列之间创建无间隙界面来克服当前的局限性。通过神经营养因子诱导神经突通过耳蜗内凝胶纳米基质吸附到位于耳聋豚鼠鼓阶的改良型纳米CI电极阵列上,在体内实现了这一宏伟目标。在功能上,无间隙界面在体内导致更低的刺激阈值和更大的动态范围,并在使用培养在多电极阵列上的听觉神经元的体外模型中降低了刺激能量需求(高达五倍)。总之,NANOCI项目提供了概念验证,即听觉神经元与人工耳蜗电极阵列之间的无间隙界面是可行的。这些发现可能与未来具有更好声音质量和性能以及更低能耗的CI系统的开发相关。本综述文章总结了NANOCI项目历程,并突出了各个工作包的成果。