Molecular Foundry, Molecular Biophysics and Integrated Biosciences, and Biological Systems and Engineering Divisions, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
J Am Chem Soc. 2017 Sep 13;139(36):12647-12654. doi: 10.1021/jacs.7b06560. Epub 2017 Aug 31.
Achieving fast electron transfer between a material and protein is a long-standing challenge confronting applications in bioelectronics, bioelectrocatalysis, and optobioelectronics. Interestingly, naturally occurring extracellular electron transfer proteins bind to and reduce metal oxides fast enough to enable cell growth, and thus could offer insight into solving this coupling problem. While structures of several extracellular electron transfer proteins are known, an understanding of how these proteins bind to their metal oxide substrates has remained elusive because this abiotic-biotic interface is inaccessible to traditional structural methods. Here, we use advanced footprinting techniques to investigate binding between the Shewanella oneidensis MR-1 extracellular electron transfer protein MtrF and one of its substrates, α-FeO nanoparticles, at the molecular level. We find that MtrF binds α-FeO specifically, but not tightly. Nanoparticle binding does not induce significant conformational changes in MtrF, but instead protects specific residues on the face of MtrF likely to be involved in electron transfer. Surprisingly, these residues are separated in primary sequence, but cluster into a small 3D putative binding site. This binding site is located near a local pocket of positive charge that is complementary to the negatively charged α-FeO surface, and mutational analysis indicates that electrostatic interactions in this 3D pocket modulate MtrF-nanoparticle binding. Strikingly, these results show that binding of MtrF to α-FeO follows a strategy to connect proteins to materials that resembles the binding between donor-acceptor electron transfer proteins. Thus, by developing a new methodology to probe protein-nanoparticle binding at the molecular level, this work reveals one of nature's strategies for achieving fast, efficient electron transfer between proteins and materials.
实现材料与蛋白质之间的快速电子转移是生物电子学、生物电化学和光生物电子学应用中面临的一个长期挑战。有趣的是,天然存在的细胞外电子转移蛋白能够快速结合并还原金属氧化物,从而使细胞生长,这为解决这种偶联问题提供了思路。虽然已经知道几种细胞外电子转移蛋白的结构,但人们对这些蛋白如何与金属氧化物底物结合的理解仍然难以捉摸,因为这种非生物-生物界面无法用传统的结构方法来研究。在这里,我们使用先进的足迹技术在分子水平上研究了 Shewanella oneidensis MR-1 细胞外电子转移蛋白 MtrF 与其底物之一α-FeO 纳米粒子之间的结合。我们发现 MtrF 特异性地但不紧密地结合α-FeO。纳米粒子的结合不会引起 MtrF 发生显著的构象变化,而是保护 MtrF 表面上可能参与电子转移的特定残基。令人惊讶的是,这些残基在一级序列中是分开的,但聚集在一个小的 3D 假定结合位点中。该结合位点位于局部正电荷口袋附近,与带负电荷的α-FeO 表面互补,突变分析表明,该 3D 口袋中的静电相互作用调节了 MtrF-纳米粒子的结合。引人注目的是,这些结果表明 MtrF 与α-FeO 的结合遵循一种将蛋白质连接到材料上的策略,类似于供体-受体电子转移蛋白之间的结合。因此,通过开发一种新的方法在分子水平上探测蛋白质-纳米粒子的结合,这项工作揭示了自然界实现蛋白质与材料之间快速、高效电子转移的一种策略。