Suppr超能文献

比较以感兴趣区域或独立分量为节点的脑图:一项模拟研究。

Comparing brain graphs in which nodes are regions of interest or independent components: A simulation study.

机构信息

The Mind Research Network, Albuquerque, NM, 87106, USA.

The Mind Research Network, Albuquerque, NM, 87106, USA; School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China.

出版信息

J Neurosci Methods. 2017 Nov 1;291:61-68. doi: 10.1016/j.jneumeth.2017.08.007. Epub 2017 Aug 12.

Abstract

BACKGROUND

A key challenge in building a brain graph using fMRI data is how to define the nodes. Spatial brain components estimated by independent components analysis (ICA) and regions of interest (ROIs) determined by brain atlas are two popular methods to define nodes in brain graphs. It is difficult to evaluate which method is better in real fMRI data.

NEW METHOD

Here we perform a simulation study and evaluate the accuracies of a few graph metrics in graphs with nodes of ICA components, ROIs, or modified ROIs in four simulation scenarios.

RESULTS

Graph measures with ICA nodes are more accurate than graphs with ROI nodes in all cases. Graph measures with modified ROI nodes are modulated by artifacts. The correlations of graph metrics across subjects between graphs with ICA nodes and ground truth are higher than the correlations between graphs with ROI nodes and ground truth in scenarios with large overlapped spatial sources. Moreover, moving the location of ROIs would largely decrease the correlations in all scenarios.

COMPARISON WITH EXISTING METHOD (S): Evaluating graphs with different nodes is promising in simulated data rather than real data because different scenarios can be simulated and measures of different graphs can be compared with a known ground truth.

CONCLUSION

Since ROIs defined using brain atlas may not correspond well to real functional boundaries, overall findings of this work suggest that it is more appropriate to define nodes using data-driven ICA than ROI approaches in real fMRI data.

摘要

背景

使用 fMRI 数据构建脑图的一个关键挑战是如何定义节点。独立成分分析(ICA)估计的空间脑成分和脑图谱确定的感兴趣区域(ROI)是定义脑图节点的两种常用方法。很难评估在真实 fMRI 数据中哪种方法更好。

新方法

在这里,我们进行了一项模拟研究,在四个模拟场景中评估了几种图度量在具有 ICA 组件节点、ROI 或修改后的 ROI 节点的图中的准确性。

结果

在所有情况下,具有 ICA 节点的图度量比具有 ROI 节点的图度量更准确。具有修改后的 ROI 节点的图度量会受到伪影的调制。具有 ICA 节点的图与真实值之间的图度量在跨主体的相关性高于具有 ROI 节点的图与真实值之间的相关性,特别是在具有大重叠空间源的情况下。此外,在所有情况下,ROI 位置的移动都会大大降低相关性。

与现有方法的比较

在模拟数据中评估具有不同节点的图比在真实数据中更有前途,因为可以模拟不同的场景并且可以将不同图的度量与已知的真实值进行比较。

结论

由于使用脑图谱定义的 ROI 可能与真实的功能边界不太吻合,因此这项工作的总体发现表明,在真实的 fMRI 数据中,使用基于数据的 ICA 定义节点比 ROI 方法更合适。

相似文献

1
Comparing brain graphs in which nodes are regions of interest or independent components: A simulation study.
J Neurosci Methods. 2017 Nov 1;291:61-68. doi: 10.1016/j.jneumeth.2017.08.007. Epub 2017 Aug 12.
2
BrainNET: Inference of Brain Network Topology Using Machine Learning.
Brain Connect. 2020 Oct;10(8):422-435. doi: 10.1089/brain.2020.0745. Epub 2020 Oct 8.
3
Network modelling methods for FMRI.
Neuroimage. 2011 Jan 15;54(2):875-91. doi: 10.1016/j.neuroimage.2010.08.063. Epub 2010 Sep 15.
4
Analysis of fMRI data by blind separation into independent spatial components.
Hum Brain Mapp. 1998;6(3):160-88. doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1.
5
Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia.
Neuroimage. 2015 Feb 15;107:345-355. doi: 10.1016/j.neuroimage.2014.12.020. Epub 2014 Dec 13.
6
Personode: A Toolbox for ICA Map Classification and Individualized ROI Definition.
Neuroinformatics. 2020 Jun;18(3):339-349. doi: 10.1007/s12021-019-09449-4.
8
A method for independent component graph analysis of resting-state fMRI.
Brain Behav. 2017 Feb 16;7(3):e00626. doi: 10.1002/brb3.626. eCollection 2017 Mar.
9
A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies.
Biometrics. 2013 Dec;69(4):970-81. doi: 10.1111/biom.12068. Epub 2013 Aug 22.
10
Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study.
Front Hum Neurosci. 2016 Sep 28;10:476. doi: 10.3389/fnhum.2016.00476. eCollection 2016.

引用本文的文献

2
Prediction of alcohol intake patterns with olfactory and gustatory brain connectivity networks.
Neuropsychopharmacology. 2025 Jun;50(7):1167-1175. doi: 10.1038/s41386-025-02058-7. Epub 2025 Feb 17.
3
Explainable Self-Supervised Dynamic Neuroimaging Using Time Reversal.
Brain Sci. 2025 Jan 11;15(1):60. doi: 10.3390/brainsci15010060.
5
Dynamic Functional Connectivity Correlates of Trait Mindfulness in Early Adolescence.
Biol Psychiatry Glob Open Sci. 2024 Jul 23;4(6):100367. doi: 10.1016/j.bpsgos.2024.100367. eCollection 2024 Nov.
6
Dynamic functional connectivity correlates of trait mindfulness in early adolescence.
bioRxiv. 2024 Jul 4:2024.07.01.601544. doi: 10.1101/2024.07.01.601544.
7
Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics.
Nat Commun. 2024 Jun 4;15(1):4745. doi: 10.1038/s41467-024-48781-5.
10
Path analysis: A method to estimate altered pathways in time-varying graphs of neuroimaging data.
Netw Neurosci. 2022 Jul 1;6(3):634-664. doi: 10.1162/netn_a_00247. eCollection 2022 Jul.

本文引用的文献

1
A method for independent component graph analysis of resting-state fMRI.
Brain Behav. 2017 Feb 16;7(3):e00626. doi: 10.1002/brb3.626. eCollection 2017 Mar.
2
Multi-scale brain networks.
Neuroimage. 2017 Oct 15;160:73-83. doi: 10.1016/j.neuroimage.2016.11.006. Epub 2016 Nov 11.
3
Sources and implications of whole-brain fMRI signals in humans.
Neuroimage. 2017 Feb 1;146:609-625. doi: 10.1016/j.neuroimage.2016.09.038. Epub 2016 Oct 15.
4
Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study.
Front Hum Neurosci. 2016 Sep 28;10:476. doi: 10.3389/fnhum.2016.00476. eCollection 2016.
5
The Structural and Functional Connectome and Prediction of Risk for Cognitive Impairment in Older Adults.
Curr Behav Neurosci Rep. 2015 Dec;2(4):234-245. doi: 10.1007/s40473-015-0056-z. Epub 2015 Oct 29.
6
Connectomics in psychiatric research: advances and applications.
Neuropsychiatr Dis Treat. 2015 Oct 29;11:2801-10. doi: 10.2147/NDT.S63470. eCollection 2015.
8
A voxelwise approach to determine consensus regions-of-interest for the study of brain network plasticity.
Front Neuroanat. 2015 Jul 28;9:97. doi: 10.3389/fnana.2015.00097. eCollection 2015.
9
The connectomics of brain disorders.
Nat Rev Neurosci. 2015 Mar;16(3):159-72. doi: 10.1038/nrn3901.
10
Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia.
Neuroimage. 2015 Feb 15;107:345-355. doi: 10.1016/j.neuroimage.2014.12.020. Epub 2014 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验