Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Atlanta, GA 30303, USA.
Georgia Institute of Technology, Emory University, Atlanta, GA 30303, USA.
Sensors (Basel). 2024 Jan 26;24(3):814. doi: 10.3390/s24030814.
Network neuroscience, a multidisciplinary field merging insights from neuroscience and network theory, offers a profound understanding of neural network intricacies. However, the impact of varying node sizes on computed graph metrics in neuroimaging data remains underexplored. This study addresses this gap by adopting a data-driven methodology to delineate functional nodes and assess their influence on graph metrics. Using the Neuromark framework, automated independent component analysis is applied to resting state fMRI data, capturing functional network connectivity (FNC) matrices. Global and local graph metrics reveal intricate connectivity patterns, emphasizing the need for nuanced analysis. Notably, node sizes, computed based on voxel counts, contribute to a novel metric termed 'node-metric coupling' (NMC). Correlations between graph metrics and node dimensions are consistently observed. The study extends its analysis to a dataset comprising Alzheimer's disease, mild cognitive impairment, and control subjects, showcasing the potential of NMC as a biomarker for brain disorders. The two key outcomes underscore the interplay between node sizes and resultant graph metrics within a given atlas, shedding light on an often-overlooked source of variability. Additionally, the study highlights the utility of NMC as a valuable biomarker, emphasizing the necessity of accounting for node sizes in future neuroimaging investigations. This work contributes to refining comparative studies employing diverse atlases and advocates for thoughtful consideration of intra-atlas node size in shaping graph metrics, paving the way for more robust neuroimaging research.
网络神经科学是一个融合了神经科学和网络理论见解的多学科领域,它提供了对神经网络复杂性的深刻理解。然而,神经影像学数据中节点大小对计算图度量的影响仍未得到充分探索。本研究通过采用数据驱动的方法来描绘功能节点并评估它们对图度量的影响,解决了这一差距。该方法使用 Neuromark 框架,对静息态 fMRI 数据进行自动独立成分分析,捕捉功能网络连接(FNC)矩阵。全局和局部图度量揭示了错综复杂的连接模式,强调需要进行细致的分析。值得注意的是,基于体素计数计算的节点大小为一个新的度量标准——“节点度量耦合”(NMC)提供了依据。图度量和节点维度之间的相关性始终存在。该研究将其分析扩展到包括阿尔茨海默病、轻度认知障碍和对照组的数据集,展示了 NMC 作为脑疾病生物标志物的潜力。这两个关键结果强调了在给定图谱内节点大小和相应图度量之间的相互作用,揭示了一个经常被忽视的可变性来源。此外,该研究强调了 NMC 作为一种有价值的生物标志物的效用,强调了在未来的神经影像学研究中考虑节点大小的必要性。这项工作有助于改进使用不同图谱的比较研究,并倡导在塑造图度量时,仔细考虑图谱内的节点大小,为更强大的神经影像学研究铺平道路。