文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

量子点作为用于肿瘤成像与治疗的多功能材料

Quantum Dots as Multifunctional Materials for Tumor Imaging and Therapy.

作者信息

Liu Longfei, Miao Qingqing, Liang Gaolin

机构信息

CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.

出版信息

Materials (Basel). 2013 Feb 5;6(2):483-499. doi: 10.3390/ma6020483.


DOI:10.3390/ma6020483
PMID:28809320
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5452096/
Abstract

The rapidly developing field of quantum dots (QDs) provides researchers with more options for imaging modalities and therapeutic strategies. In recent years, QDs were widely used as multifunctional materials for tumor imaging and therapy due to their characteristic properties such as semiconductive, zero-dimension and strong fluorescence. Nevertheless, there still exist the challenges of employing these properties of QDs for clinical diagnosis and therapy. Herein, we briefly review the development, properties and applications of QDs in tumor imaging and therapy. Future perspectives in these areas are also proposed as well.

摘要

量子点(QDs)迅速发展的领域为研究人员提供了更多的成像方式和治疗策略选择。近年来,量子点因其半导体、零维、强荧光等特性被广泛用作肿瘤成像和治疗的多功能材料。然而,利用量子点的这些特性进行临床诊断和治疗仍存在挑战。在此,我们简要回顾了量子点在肿瘤成像和治疗方面的发展、特性及应用。同时也提出了这些领域的未来展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/427e2a70f827/materials-06-00483-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/4a7bce31ae5e/materials-06-00483-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/bb2d28629d92/materials-06-00483-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/42feb775a253/materials-06-00483-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/232d6660dd82/materials-06-00483-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/b22c461dd1d8/materials-06-00483-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/15917fc0bcd6/materials-06-00483-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/f04601d15abb/materials-06-00483-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/6ede0e8d5d1f/materials-06-00483-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/dccbe34e4ce6/materials-06-00483-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/2f021406b3dc/materials-06-00483-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/427e2a70f827/materials-06-00483-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/4a7bce31ae5e/materials-06-00483-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/bb2d28629d92/materials-06-00483-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/42feb775a253/materials-06-00483-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/232d6660dd82/materials-06-00483-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/b22c461dd1d8/materials-06-00483-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/15917fc0bcd6/materials-06-00483-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/f04601d15abb/materials-06-00483-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/6ede0e8d5d1f/materials-06-00483-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/dccbe34e4ce6/materials-06-00483-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/2f021406b3dc/materials-06-00483-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0396/5452096/427e2a70f827/materials-06-00483-g011.jpg

相似文献

[1]
Quantum Dots as Multifunctional Materials for Tumor Imaging and Therapy.

Materials (Basel). 2013-2-5

[2]
Quantum Dots as a Potential Multifunctional Material for the Enhancement of Clinical Diagnosis Strategies and Cancer Treatments.

Nanomaterials (Basel). 2024-6-25

[3]
Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging.

Cancer Biomark. 2008

[4]
Semiconductor quantum dots for biosensing and in vivo imaging.

IEEE Trans Nanobioscience. 2009-3

[5]
Quantum dots in cancer therapy.

Expert Opin Drug Deliv. 2011-12-16

[6]
Intracellular nucleic acid interactions facilitated by quantum dots: conceptualizing theranostics.

Ther Deliv. 2012-4

[7]
Fluorescent quantum dots: synthesis, biomedical optical imaging, and biosafety assessment.

Colloids Surf B Biointerfaces. 2014-12-1

[8]
In Vivo Imaging Technology of Transplanted Stem Cells Using Quantum Dots for Regenerative Medicine.

Anal Sci. 2018

[9]
Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy.

Acta Biomater. 2018-5-4

[10]
Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine.

Adv Drug Deliv Rev. 2015-9-4

引用本文的文献

[1]
Gamma-Camera Direct Imaging of the Plasma and On/Intra Cellular Distribution of the Tc-DPD-FeO Dual-Modality Contrast Agent in Peripheral Human Blood.

Materials (Basel). 2024-1-9

[2]
Review of the Role of Nanotechnology in Overcoming the Challenges Faced in Oral Cancer Diagnosis and Treatment.

Molecules. 2023-7-14

[3]
Interplay of Oxidative Stress, Inflammation, and Autophagy in RAW 264.7 Murine Macrophage Cell Line Challenged with Si/SiO Quantum Dots.

Materials (Basel). 2023-7-19

[4]
Nanocarrier-based drug combination therapy for glioblastoma.

Theranostics. 2020

[5]
Nanotechnology: a promising method for oral cancer detection and diagnosis.

J Nanobiotechnology. 2018-6-11

[6]
Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging.

Nanoscale Res Lett. 2015-4-10

[7]
Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups.

Nanoscale Res Lett. 2014-3-6

本文引用的文献

[1]
Quantum dots: heralding a brighter future for clinical diagnostics.

Nanomedicine (Lond). 2012-11

[2]
Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential.

PLoS One. 2012-11-5

[3]
Small heat shock proteins and the cytoskeleton: an essential interplay for cell integrity?

Int J Biochem Cell Biol. 2012-6-7

[4]
The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites.

Nat Prod Rep. 2012-5-1

[5]
Molecular mechanisms of cisplatin resistance.

Oncogene. 2011-9-5

[6]
Quantum dot-folic acid conjugates as potential photosensitizers in photodynamic therapy of cancer.

Photochem Photobiol Sci. 2011-4-9

[7]
A biocompatible condensation reaction for controlled assembly of nanostructures in living cells.

Nat Chem. 2009-12-17

[8]
Evaluation of the bioconjugation efficiency of different quantum dots as probes for immunostaining tumor-marker proteins.

Appl Spectrosc. 2010-8

[9]
Tumor suppressor interactions with microtubules: keeping cell polarity and cell division on track.

Dis Model Mech. 2010

[10]
Actin cytoskeleton dynamics and the cell division cycle.

Int J Biochem Cell Biol. 2010-4-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索