Suppr超能文献

肌肉活动和惯性运动数据用于日常生活活动的非侵入性分类。

Muscle Activation and Inertial Motion Data for Noninvasive Classification of Activities of Daily Living.

出版信息

IEEE Trans Biomed Eng. 2018 May;65(5):1069-1076. doi: 10.1109/TBME.2017.2738440. Epub 2017 Aug 10.

Abstract

OBJECTIVE

Remote monitoring of physical activity using body-worn sensors provides an objective alternative to current functional assessment tools. The purpose of this study was to assess the feasibility of classifying categories of activities of daily living from the functional arm activity behavioral observation system (FAABOS) using muscle activation and motion data.

METHODS

Ten nondisabled, healthy adults were fitted with a Myo armband on the upper forearm. This multimodal commercial sensor device features surface electromyography (sEMG) sensors, an accelerometer, and a rate gyroscope. Participants performed 17 different activities of daily living, which belonged to one of four functional groups according to the FAABOS. Signal magnitude area (SMA) and mean values were extracted from the acceleration and angular rate of change data; root mean square (RMS) was computed for the sEMG data. A nearest neighbors machine learning algorithm was then applied to predict the FAABOS task category using these raw data as inputs.

RESULTS

Mean acceleration, SMA of acceleration, mean angular rate of change, and RMS of sEMG were significantly different across the four FAABOS categories ( in all cases). A classifier using mean acceleration, mean angular rate of change, and sEMG data was able to predict task category with 89.2% accuracy.

CONCLUSION

The results demonstrate the feasibility of using a combination of sEMG and motion data to noninvasively classify types of activities of daily living.

SIGNIFICANCE

This approach may be useful for quantifying daily activity performance in ambient settings as a more ecologically valid measure of function in healthy and disease-affected individuals.

摘要

目的

使用佩戴在身体上的传感器对身体活动进行远程监测,为当前的功能评估工具提供了一种客观的替代方法。本研究旨在评估使用肌肉激活和运动数据从功能臂活动行为观察系统(FAABOS)分类日常生活活动类别的可行性。

方法

10 名非残疾健康成年人在上臂佩戴 Myo 臂带。这种多模式商业传感器设备具有表面肌电图(sEMG)传感器、加速度计和速率陀螺仪。参与者执行了 17 种不同的日常生活活动,这些活动根据 FAABOS 分为四个功能组之一。从加速度和角速率变化数据中提取信号幅度面积(SMA)和平均值;从 sEMG 数据中计算均方根(RMS)。然后应用最近邻机器学习算法,使用这些原始数据作为输入来预测 FAABOS 任务类别。

结果

在四个 FAABOS 类别中,平均加速度、加速度的 SMA、平均角速率变化和 sEMG 的 RMS 均存在显著差异(在所有情况下)。使用平均加速度、平均角速率变化和 sEMG 数据的分类器能够以 89.2%的准确率预测任务类别。

结论

结果表明,使用 sEMG 和运动数据的组合来非侵入性地分类日常生活活动类型是可行的。

意义

这种方法可用于在环境设置中量化日常活动表现,作为健康和患病个体功能的更具生态有效性的衡量标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验