Suppr超能文献

基于 1DCNN-LSTM 的深度学习算法用于自动睡眠分期。

A deep learning algorithm based on 1D CNN-LSTM for automatic sleep staging.

机构信息

College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China.

School of Automation, Chongqing University of Posts and Telecommunications, Chongqing, China.

出版信息

Technol Health Care. 2022;30(2):323-336. doi: 10.3233/THC-212847.

Abstract

BACKGROUND

Sleep staging is an important part of sleep research. Traditional automatic sleep staging based on machine learning requires extensive feature extraction and selection.

OBJECTIVE

This paper proposed a deep learning algorithm without feature extraction based on one-dimensional convolutional neural network and long short-term memory.

METHODS

The algorithm can automatically divide sleep into 5 phases including awake period, non-rapid eye movement sleep period (N1 ∼ N3) and rapid eye movement using the electroencephalogram signals. The raw signal was processed by the wavelet transform. Then, the processed signal was directly input into the deep learning algorithm to obtain the staging result.

RESULTS

The accuracy of staging is 93.47% using the Fpz-Cz electroencephalogram signal. When using the Fpz-Cz and electroencephalogram signal, the algorithm can obtain the highest accuracy of 94.15%.

CONCLUSION

These results show that this algorithm is suitable for different physiological signals and can realize end-to-end automatic sleep staging without any manual feature extraction.

摘要

背景

睡眠分期是睡眠研究的重要组成部分。传统的基于机器学习的自动睡眠分期需要广泛的特征提取和选择。

目的

本文提出了一种基于一维卷积神经网络和长短时记忆的无需特征提取的深度学习算法。

方法

该算法可以使用脑电图信号自动将睡眠分为清醒期、非快速眼动睡眠期(N1~N3)和快速眼动期 5 个阶段。原始信号经过小波变换处理。然后,将处理后的信号直接输入到深度学习算法中,以获得分期结果。

结果

使用 Fpz-Cz 脑电图信号时,分期的准确率为 93.47%。当使用 Fpz-Cz 和脑电图信号时,该算法可以获得最高的准确率 94.15%。

结论

这些结果表明,该算法适用于不同的生理信号,可以实现端到端的自动睡眠分期,无需任何手动特征提取。

相似文献

4
A Residual Based Attention Model for EEG Based Sleep Staging.基于残差的 EEG 睡眠分期注意模型。
IEEE J Biomed Health Inform. 2020 Oct;24(10):2833-2843. doi: 10.1109/JBHI.2020.2978004. Epub 2020 Mar 3.
6
Intelligent automatic sleep staging model based on CNN and LSTM.基于 CNN 和 LSTM 的智能自动睡眠分期模型。
Front Public Health. 2022 Jul 27;10:946833. doi: 10.3389/fpubh.2022.946833. eCollection 2022.
10
Amplitude-Time Dual-View Fused EEG Temporal Feature Learning for Automatic Sleep Staging.基于双通道融合 EEG 时频特征学习的自动睡眠分期方法。
IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6492-6506. doi: 10.1109/TNNLS.2022.3210384. Epub 2024 May 2.

本文引用的文献

3
Comparative analysis of different characteristics of automatic sleep stages.不同自动睡眠阶段特征的比较分析。
Comput Methods Programs Biomed. 2019 Jul;175:53-72. doi: 10.1016/j.cmpb.2019.04.004. Epub 2019 Apr 6.
4
Ensemble learning algorithm based on multi-parameters for sleep staging.基于多参数的睡眠分期集成学习算法。
Med Biol Eng Comput. 2019 Aug;57(8):1693-1707. doi: 10.1007/s11517-019-01978-z. Epub 2019 May 18.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验