Suppr超能文献

在肌电图控制的视觉运动任务中训练腕伸肌功能并检测不必要的运动策略。

Training wrist extensor function and detecting unwanted movement strategies in an EMG-controlled visuomotor task.

作者信息

Lyu Mingxing, Lambelet Charles, Woolley Daniel, Zhang Xue, Chen Weihai, Ding Xilun, Gassert Roger, Wenderoth Nicole

出版信息

IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1549-1555. doi: 10.1109/ICORR.2017.8009468.

Abstract

Stroke patients often suffer from severe upper limb paresis. Rehabilitation treatment typically targets motor impairments as early as possible, however, muscular contractions, particularly in the wrist and fingers, are often too weak to produce overt movements, making the initial phase of rehabilitation training difficult. Here we propose a new training tool whereby electromyographic (EMG) activity is measured in the wrist extensors and serves as a proxy of voluntary corticomotor drive. We used the Myo armband to develop a proportional EMG controller which allowed volunteers to perform a simple visuomotor task by modulating wrist extensor activity. In this preliminary study six healthy participants practiced the task for one session (144 trials), which resulted in a significant reduction of the average trial time required to move and hold a cursor in different target zones (p < 0.001, ANOVA), indicating skill learning. Additionally, we implemented an EMG based classifier to distinguish between the desired movement strategy and unwanted alternatives. Validation of the classifier indicated that accuracy for detecting rest, wrist extension and unwanted strategies was 92.5 + 6.9% (M + SD) across all participants. When performing the motor task the classification algorithm flagged 4.3 + 3.5% of the trials as 'unwanted strategies', even in healthy subjects. We also report initial feedback from a survey submitted to two chronic stroke patients to inquire about feasibility and acceptance of the general setup by patients.

摘要

中风患者常常患有严重的上肢麻痹。康复治疗通常尽早针对运动障碍展开,然而,肌肉收缩,尤其是手腕和手指的肌肉收缩,往往过于微弱,无法产生明显的动作,这使得康复训练的初始阶段变得困难。在此,我们提出一种新的训练工具,通过测量腕伸肌的肌电图(EMG)活动,并将其作为自主皮质运动驱动的替代指标。我们使用Myo臂带开发了一种比例EMG控制器,使志愿者能够通过调节腕伸肌活动来执行简单的视觉运动任务。在这项初步研究中,六名健康参与者进行了一个疗程(144次试验)的任务练习,结果在不同目标区域移动和保持光标所需的平均试验时间显著缩短(p < 0.001,方差分析),表明技能学习。此外,我们实施了一种基于EMG的分类器,以区分期望的运动策略和不必要的替代策略。分类器的验证表明,在所有参与者中,检测休息、腕伸展和不必要策略的准确率为92.5 + 6.9%(平均值 + 标准差)。在执行运动任务时,即使在健康受试者中,分类算法也将4.3 + 3.5%的试验标记为“不必要策略”。我们还报告了向两名慢性中风患者提交的一份调查问卷的初步反馈,以询问患者对总体设置的可行性和接受度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验