Suppr超能文献

多电极微通道平台揭示了轴突传导速度的瞬态和缓慢变化。

A multielectrode array microchannel platform reveals both transient and slow changes in axonal conduction velocity.

机构信息

Department of Neuroscience and Brain Technologies (NBT), Fondazione Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genoa, Italy.

Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.

出版信息

Sci Rep. 2017 Aug 17;7(1):8558. doi: 10.1038/s41598-017-09033-3.

Abstract

Due to their small dimensions, electrophysiology on thin and intricate axonal branches in support of understanding their role in normal and diseased brain function poses experimental challenges. To reduce experimental complexity, we coupled microelectrode arrays (MEAs) to bi-level microchannel devices for the long-term in vitro tracking of axonal morphology and activity with high spatiotemporal resolution. Our model allowed the long-term multisite recording from pure axonal branches in a microscopy-compatible environment. Compartmentalizing the network structure into interconnected subpopulations simplified access to the locations of interest. Electrophysiological data over 95 days in vitro (DIV) showed an age-dependent increase of axonal conduction velocity, which was positively correlated with, but independent of evolving burst activity over time. Conduction velocity remained constant at chemically increased network activity levels. In contrast, low frequency (1 Hz, 180 repetitions) electrical stimulation of axons or network subpopulations evoked amplitude-dependent direct (5-35 ms peri-stimulus) and polysynaptic (35-1,000 ms peri-stimulus) activity with temporarily (<35 ms) elevated propagation velocities along the perisomatic branches. Furthermore, effective stimulation amplitudes were found to be significantly lower (>250 mV) in microchannels when compared with those reported for unconfined cultures (>800 mV). The experimental paradigm may lead to new insights into stimulation-induced axonal plasticity.

摘要

由于其尺寸较小,对薄而复杂的轴突分支进行电生理学研究,以支持理解它们在正常和患病大脑功能中的作用,这带来了实验挑战。为了降低实验复杂性,我们将微电极阵列 (MEA) 与双级微通道设备相耦合,以便长期以高时空分辨率体外跟踪轴突形态和活动。我们的模型允许在显微镜兼容的环境中从纯轴突分支进行长期多部位记录。将网络结构分区为相互连接的亚群,简化了对感兴趣位置的访问。在体外 95 天(DIV)的电生理数据显示,轴突传导速度随年龄增长而增加,与随时间演变的爆发活动呈正相关,但与爆发活动独立。在化学增加网络活动水平时,传导速度保持不变。相比之下,对轴突或网络亚群进行低频(1 Hz,180 次重复)电刺激会诱发幅度依赖性的直接(5-35 ms 刺激后)和多突触(35-1000 ms 刺激后)活动,沿体周分支暂时(<35 ms)提高传播速度。此外,与未受约束的培养物(>800 mV)相比,在微通道中发现有效刺激幅度明显较低(>250 mV)。该实验方案可能会为刺激诱导的轴突可塑性提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bf5/5561146/653caed78797/41598_2017_9033_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验