Amos Giulia, Ihle Stephan J, Clément Blandine F, Duru Jens, Girardin Sophie, Maurer Benedikt, Delipinar Tuğçe, Vörös János, Ruff Tobias
Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.
Front Neurosci. 2024 May 21;18:1396966. doi: 10.3389/fnins.2024.1396966. eCollection 2024.
Understanding the retinogeniculate pathway can offer insights into its development and potential for future therapeutic applications. This study presents a Polydimethylsiloxane-based two-chamber system with axon guidance channels, designed to replicate unidirectional retinogeniculate signal transmission . Using embryonic rat retinas, we developed a model where retinal spheroids innervate thalamic targets through up to 6 mm long microfluidic channels. Using a combination of electrical stimulation and functional calcium imaging we assessed how channel length and electrical stimulation frequency affects thalamic target response. In the presented model we integrated up to 20 identical functional retinothalamic neural networks aligned on a single transparent microelectrode array, enhancing the robustness and quality of recorded functional data. We found that network integrity depends on channel length, with 0.5-2 mm channels maintaining over 90% morphological and 50% functional integrity. A reduced network integrity was recorded in longer channels. The results indicate a notable reduction in forward spike propagation in channels longer than 4 mm. Additionally, spike conduction fidelity decreased with increasing channel length. Yet, stimulation-induced thalamic target activity remained unaffected by channel length. Finally, the study found that a sustained thalamic calcium response could be elicited with stimulation frequencies up to 31 Hz, with higher frequencies leading to transient responses. In conclusion, this study presents a high-throughput platform that demonstrates how channel length affects retina to brain network formation and signal transmission .
了解视网膜神经节细胞通路有助于深入了解其发育过程以及未来治疗应用的潜力。本研究提出了一种基于聚二甲基硅氧烷的双室系统,该系统带有轴突导向通道,旨在复制单向视网膜神经节细胞信号传输。我们使用胚胎大鼠视网膜建立了一个模型,其中视网膜球体通过长达6毫米的微流体通道支配丘脑靶点。我们结合电刺激和功能性钙成像,评估了通道长度和电刺激频率如何影响丘脑靶点反应。在本模型中,我们在单个透明微电极阵列上整合了多达20个相同的功能性视网膜丘脑神经网络,提高了所记录功能数据的稳健性和质量。我们发现网络完整性取决于通道长度,0.5 - 2毫米的通道可维持超过90%的形态完整性和50%的功能完整性。在较长通道中记录到网络完整性降低。结果表明,在长度超过4毫米的通道中,正向尖峰传播显著减少。此外,尖峰传导保真度随通道长度增加而降低。然而,刺激诱导的丘脑靶点活动不受通道长度影响。最后,研究发现,刺激频率高达31赫兹时可引发持续的丘脑钙反应,频率越高反应越短暂。总之,本研究提出了一个高通量平台,展示了通道长度如何影响视网膜到脑网络的形成和信号传输。