Suppr超能文献

一项纵向人体微生物组肠道清理扰动实验的多领域分析

Multidomain analyses of a longitudinal human microbiome intestinal cleanout perturbation experiment.

作者信息

Fukuyama Julia, Rumker Laurie, Sankaran Kris, Jeganathan Pratheepa, Dethlefsen Les, Relman David A, Holmes Susan P

机构信息

Statistics Department, Stanford University, Stanford, California, USA.

Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.

出版信息

PLoS Comput Biol. 2017 Aug 18;13(8):e1005706. doi: 10.1371/journal.pcbi.1005706. eCollection 2017 Aug.

Abstract

Our work focuses on the stability, resilience, and response to perturbation of the bacterial communities in the human gut. Informative flash flood-like disturbances that eliminate most gastrointestinal biomass can be induced using a clinically-relevant iso-osmotic agent. We designed and executed such a disturbance in human volunteers using a dense longitudinal sampling scheme extending before and after induced diarrhea. This experiment has enabled a careful multidomain analysis of a controlled perturbation of the human gut microbiota with a new level of resolution. These new longitudinal multidomain data were analyzed using recently developed statistical methods that demonstrate improvements over current practices. By imposing sparsity constraints we have enhanced the interpretability of the analyses and by employing a new adaptive generalized principal components analysis, incorporated modulated phylogenetic information and enhanced interpretation through scoring of the portions of the tree most influenced by the perturbation. Our analyses leverage the taxa-sample duality in the data to show how the gut microbiota recovers following this perturbation. Through a holistic approach that integrates phylogenetic, metagenomic and abundance information, we elucidate patterns of taxonomic and functional change that characterize the community recovery process across individuals. We provide complete code and illustrations of new sparse statistical methods for high-dimensional, longitudinal multidomain data that provide greater interpretability than existing methods.

摘要

我们的工作聚焦于人类肠道中细菌群落的稳定性、恢复力以及对扰动的响应。使用一种临床相关的等渗剂可引发类似山洪暴发的信息性干扰,这种干扰能消除大部分胃肠道生物量。我们利用密集的纵向采样方案,在诱导腹泻前后对人类志愿者设计并实施了这样的干扰。该实验得以对人类肠道微生物群的可控扰动进行细致的多领域分析,达到了新的分辨率水平。运用最近开发的统计方法对这些新的纵向多领域数据进行了分析,这些方法相较于当前做法有改进。通过施加稀疏性约束,我们提高了分析的可解释性;通过采用新的自适应广义主成分分析,纳入了调制的系统发育信息,并通过对受扰动影响最大的树的部分进行评分增强了解释。我们的分析利用数据中的分类单元 - 样本对偶性来展示肠道微生物群在此扰动后是如何恢复的。通过整合系统发育、宏基因组和丰度信息的整体方法,我们阐明了表征个体间群落恢复过程的分类学和功能变化模式。我们提供了用于高维纵向多领域数据的新稀疏统计方法的完整代码和示例,这些方法比现有方法具有更高的可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验