Suppr超能文献

用于自闭症谱系障碍研究的海马体和杏仁核影像组学生物标志物

Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder.

作者信息

Chaddad Ahmad, Desrosiers Christian, Hassan Lama, Tanougast Camel

机构信息

Laboratory for Imagery, Vision and Artificial Intelligence, Ecole de Technologie Supérieure, Montreal, Canada.

Laboratory of Conception, Optimization and Modeling of Systems, University of Lorraine, Metz, France.

出版信息

BMC Neurosci. 2017 Jul 11;18(1):52. doi: 10.1186/s12868-017-0373-0.

Abstract

BACKGROUND

Emerging evidence suggests the presence of neuroanatomical abnormalities in subjects with autism spectrum disorder (ASD). Identifying anatomical correlates could thus prove useful for the automated diagnosis of ASD. Radiomic analyses based on MRI texture features have shown a great potential for characterizing differences occurring from tissue heterogeneity, and for identifying abnormalities related to these differences. However, only a limited number of studies have investigated the link between image texture and ASD. This paper proposes the study of texture features based on grey level co-occurrence matrix (GLCM) as a means for characterizing differences between ASD and development control (DC) subjects. Our study uses 64 T1-weighted MRI scans acquired from two groups of subjects: 28 typical age range subjects 4-15 years old (14 ASD and 14 DC, age-matched), and 36 non-typical age range subjects 10-24 years old (20 ASD and 16 DC). GLCM matrices are computed from manually labeled hippocampus and amygdala regions, and then encoded as texture features by applying 11 standard Haralick quantifier functions. Significance tests are performed to identify texture differences between ASD and DC subjects. An analysis using SVM and random forest classifiers is then carried out to find the most discriminative features, and use these features for classifying ASD from DC subjects.

RESULTS

Preliminary results show that all 11 features derived from the hippocampus (typical and non-typical age) and 4 features extracted from the amygdala (non-typical age) have significantly different distributions in ASD subjects compared to DC subjects, with a significance of p < 0.05 following Holm-Bonferroni correction. Features derived from hippocampal regions also demonstrate high discriminative power for differentiating between ASD and DC subjects, with classifier accuracy of 67.85%, sensitivity of 62.50%, specificity of 71.42%, and the area under the ROC curve (AUC) of 76.80% for age-matched subjects with typical age range.

CONCLUSIONS

Results demonstrate the potential of hippocampal texture features as a biomarker for the diagnosis and characterization of ASD.

摘要

背景

新出现的证据表明,自闭症谱系障碍(ASD)患者存在神经解剖学异常。因此,识别解剖学关联可能对ASD的自动诊断有用。基于MRI纹理特征的放射组学分析在表征组织异质性产生的差异以及识别与这些差异相关的异常方面显示出巨大潜力。然而,只有少数研究调查了图像纹理与ASD之间的联系。本文提出基于灰度共生矩阵(GLCM)研究纹理特征,作为表征ASD与发育对照(DC)受试者之间差异的一种方法。我们的研究使用了从两组受试者获取的64张T1加权MRI扫描图像:28名年龄在4至15岁的典型年龄范围受试者(14名ASD和14名DC,年龄匹配),以及36名年龄在10至24岁的非典型年龄范围受试者(20名ASD和16名DC)。从手动标记的海马体和杏仁核区域计算GLCM矩阵,然后通过应用11个标准的哈拉里克量化函数将其编码为纹理特征。进行显著性检验以识别ASD和DC受试者之间的纹理差异。然后使用支持向量机(SVM)和随机森林分类器进行分析,以找到最具判别力的特征,并使用这些特征对ASD和DC受试者进行分类。

结果

初步结果表明,与DC受试者相比,从海马体(典型和非典型年龄)得出所有11个特征以及从杏仁核(非典型年龄)提取的4个特征在ASD受试者中具有显著不同的分布,经霍尔姆 - 邦费罗尼校正后,显著性为p < 0.05。从海马体区域得出的特征在区分ASD和DC受试者方面也显示出高判别力,对于年龄匹配的典型年龄范围受试者,分类器准确率为67.85%,灵敏度为62.50%,特异性为71.42%,ROC曲线下面积(AUC)为76.80%。

结论

结果证明了海马体纹理特征作为ASD诊断和特征化生物标志物的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5286/6389224/d946da676edb/12868_2017_373_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验