Suppr超能文献

聚酰脲作为用于组织工程的新型可降解细胞载体材料

Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering.

作者信息

Jovanovic Danijela, Roukes Frans V, Löber Andrea, Engels Gerwin E, Oeveren Willem van, Seijen Xavier J Gallego van, Luyn Marja J A van, Harmsen Martin C, Schouten Arend Jan

机构信息

Department of Polymer Science, Faculty of Mathematics and Natural Sciences, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Institute for Bioengineering, Martin-Luther University, Halle 06108, Germany.

出版信息

Materials (Basel). 2011 Oct 6;4(10):1705-1727. doi: 10.3390/ma4101705.

Abstract

Polycaprolactone (PCL) polyester and segmented aliphatic polyester urethanes based on PCL soft segment have been thoroughly investigated as biodegradable scaffolds for tissue engineering. Although proven beneficial as long term implants, these materials degrade very slowly and are therefore not suitable in applications in which scaffold support is needed for a shorter time. A recently developed class of polyacylurethanes (PAUs) is expected to fulfill such requirements. Our aim was to assess in vitro the degradation of PAUs and evaluate their suitability as temporary scaffold materials to support soft tissue repair. With both a mass loss of 2.5-3.0% and a decrease in molar mass of approx. 35% over a period of 80 days, PAUs were shown to degrade via both bulk and surface erosion mechanisms. Fourier Transform Infra Red (FTIR) spectroscopy was successfully applied to study the extent of PAUs microphase separation during in vitro degradation. The microphase separated morphology of PAU1000 (molar mass of the oligocaprolactone soft segment = 1000 g/mol) provided this polymer with mechano-physical characteristics that would render it a suitable material for constructs and devices. PAU1000 exhibited excellent haemocompatibility in vitro. In addition, PAU1000 supported both adhesion and proliferation of vascular endothelial cells and this could be further enhanced by pre-coating of PAU1000 with fibronectin (Fn). The contact angle of PAU1000 decreased both with in vitro degradation and by incubation in biological fluids. In endothelial cell culture medium the contact angle reached 60°, which is optimal for cell adhesion. Taken together, these results support the application of PAU1000 in the field of soft tissue repair as a temporary degradable scaffold.

摘要

聚己内酯(PCL)聚酯以及基于PCL软段的嵌段脂肪族聚酯聚氨酯,作为用于组织工程的可生物降解支架材料已得到深入研究。尽管已证明这些材料作为长期植入物有益,但它们降解非常缓慢,因此不适用于需要较短时间支架支撑的应用。最近开发的一类聚酰基聚氨酯(PAU)有望满足此类要求。我们的目的是在体外评估PAU的降解情况,并评估它们作为支持软组织修复的临时支架材料的适用性。在80天的时间里,PAU的质量损失为2.5 - 3.0%,摩尔质量降低了约35%,结果表明PAU通过本体和表面侵蚀机制进行降解。傅里叶变换红外(FTIR)光谱成功用于研究体外降解过程中PAU的微相分离程度。PAU1000(低聚己内酯软段的摩尔质量 = 1000 g/mol)的微相分离形态赋予该聚合物机械物理特性,使其成为适用于构建体和装置的材料。PAU1000在体外表现出优异的血液相容性。此外,PAU1000支持血管内皮细胞的黏附和增殖,并且通过用纤连蛋白(Fn)预涂覆PAU1000可进一步增强这种作用。PAU1000的接触角随着体外降解以及在生物流体中的孵育而减小。在内皮细胞培养基中,接触角达到60°,这对于细胞黏附是最佳的。综上所述,这些结果支持将PAU1000作为临时可降解支架应用于软组织修复领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4b2/5448868/47a78ce8e5e2/materials-04-01705-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验