Suppr超能文献

重复测量数据缺失时个体生长轨迹的估计

Estimation of Individual Growth Trajectories When Repeated Measures Are Missing.

作者信息

Brooks Mollie E, Clements Christopher, Pemberton Josephine, Ozgul Arpat

出版信息

Am Nat. 2017 Sep;190(3):377-388. doi: 10.1086/692797. Epub 2017 Aug 2.

Abstract

Individuals in a population vary in their growth due to hidden and observed factors such as age, genetics, environment, disease, and carryover effects from past environments. Because size affects fitness, growth trajectories scale up to affect population dynamics. However, it can be difficult to estimate growth in data from wild populations with missing observations and observation error. Previous work has shown that linear mixed models (LMMs) underestimate hidden individual heterogeneity when more than 25% of repeated measures are missing. Here we demonstrate a flexible and robust way to model growth trajectories. We show that state-space models (SSMs), fit using R package growmod, are far less biased than LMMs when fit to simulated data sets with missing repeated measures and observation error. This method is much faster than Markov chain Monte Carlo methods, allowing more models to be tested in a shorter time. For the scenarios we simulated, SSMs gave estimates with little bias when up to 87.5% of repeated measures were missing. We use this method to quantify growth of Soay sheep, using data from a long-term mark-recapture study, and demonstrate that growth decreased with age, population density, weather conditions, and when individuals are reproductive. The method improves our ability to quantify how growth varies among individuals in response to their attributes and the environments they experience, with particular relevance for wild populations.

摘要

由于年龄、遗传、环境、疾病以及过去环境的遗留效应等隐藏和可观察因素,种群中的个体在生长方面存在差异。因为体型会影响适合度,所以生长轨迹会放大以影响种群动态。然而,对于存在缺失观测值和观测误差的野生种群数据,估计生长情况可能会很困难。先前的研究表明,当超过25%的重复测量值缺失时,线性混合模型(LMMs)会低估隐藏的个体异质性。在此,我们展示了一种灵活且稳健的方法来对生长轨迹进行建模。我们表明,使用R包growmod拟合的状态空间模型(SSMs),在拟合具有缺失重复测量值和观测误差的模拟数据集时,偏差远小于线性混合模型。该方法比马尔可夫链蒙特卡罗方法快得多,能够在更短的时间内测试更多模型。对于我们模拟的情景,当高达87.5%的重复测量值缺失时,状态空间模型给出的估计偏差很小。我们使用这种方法,利用一项长期标记重捕研究的数据来量化索艾羊的生长情况,并证明生长随年龄、种群密度、天气条件以及个体是否处于繁殖期而下降。该方法提高了我们量化个体生长如何因其属性和所经历的环境而变化的能力,这对于野生种群尤为重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验